
David L. Craig <dlc.usa@gmail.com> http://dlcusa.net/CRUX_prtpkg_Overview.pdf Jun 16, 2017 19:28:11UT

CRUX prtpkg Software Maintenance: An Overview

1. Historical Software Maintenance in CRUX—KISS..5
1.1. What Is CRUX? What is KISS?..5
1.2. In The Beginning, pkgutils...5
1.3. Supporting Different Package Configurations: ports, prt-get............................7
1.4. Official Website For Collections...8
2. What prtpkg Adds to CRUX Software Maintenance.....................................9
2.1. In a Nutshell..9
2.1.1. Shared Maintenance Within or Between Systems...9
2.1.2. Maintenance Activity Tracking...9
2.1.3. Building Configurations..9
2.1.4. Maintenance Policies...10
2.2. Rationale..10
2.3. What prtpkg Does Not Add to CRUX Software Maintenance...........................11
3. Design Concepts...12
3.1. Graphical Overview...12
3.2. Introducing Commonwealth: Global and Local Concepts..................................13
3.2.1. Boot and chroot Cells For /etc, /usr, and /var...13
3.2.1.1. Concepts For chroot Cells...13
3.2.2. Senior and Junior Cells For portdb...14
3.2.3. Prime, usrport, and symport Cells For portsu..14
3.2.4. Filesystems..15
3.2.5. Userids and Groupids..16
3.2.6. Environment Variables...17
3.2.6.1. BOOTOS..17
3.2.6.2. ROOTFS...17
3.2.6.3. PRTPKG_CELL...17
3.3. Installs and Release Updates For Cells...18
3.3.1. Kernel Maintenance..18
3.3.2. Installing Into Boot Cells..19
3.3.2.1. Pre-existing Commonwealth..19
3.3.2.2. New Single-platform Commonwealth..19
3.3.2.3. New Multi-platform Commonwealth...19
3.3.3. Installing Into chroot Cells..20
3.3.4. Release Updates—Overview...20
3.3.4.1. Phase 1 for boot Cells..20
3.3.4.2. Phase 1 for chroot Cells..20

Page 1 of 48

mailto:dlc.usa@gmail.com
http://dlcusa.net/CRUX_prtpkg_Overview.pdf

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.3.4.3. Phase 2 for All Cells (portdb update)...20
3.4. Introducing Layers: releases, symports, mixes, builds, and deploys.................20
3.4.1. Symport Collection Sets..21
3.4.2. Mixed Cells...22
3.5. Introducing Relationships: porters, builders, and deployers.............................22
3.6. Introducing Batches: prtpkgbatch and its *.prtpkg files....................................22
3.7. Introducing New Configuration Files: build.conf and deploy.conf....................22
3.8. Introducing /usr/prtpkg and Where To Find Everything...................................22
3.8.1. /usr/prtpkg/release...23
3.8.2. /usr/prtpkg/broadcasts...23
3.8.3. /usr/prtpkg/builds..23
3.8.4. /usr/prtpkg/cells...24
3.8.5. /usr/prtpkg/groups...24
3.8.6. /usr/prtpkg/mixes...24
3.8.7. /usr/prtpkg/PRTPKG...25
3.8.8. /usr/prtpkg/PORTDB...25
3.8.9. /usr/prtpkg/release/builders..25
3.8.10. /usr/prtpkg/release/deployers..25
3.8.11. /usr/prtpkg/release/distfiles...25
3.8.12. /usr/prtpkg/release/packages...25
3.8.13. /usr/prtpkg/release/work..25
3.8.14. /usr/prtpkg/release/PORTSU...25
3.8.15. /usr/prtpkg/cells/cell...25
3.8.16. /usr/prtpkg/cells/cell/prtpkg.txt...26
3.8.17. /usr/prtpkg/cells/cell/notices..26
3.8.18. /usr/prtpkg/cells/cell/requests..26
3.8.19. /usr/prtpkg/cells/cell/types...26
3.9. Mapping Old Commands Into New Commands..26
4. Processing Organization..26
4.1. Resource Serialization (Locks)...26
4.1.1. Serialization Classes..27
4.1.2. Serialization Operations..28
4.1.2.1. lock_obtain...28
4.1.2.2. lock_assume...28
4.1.2.3. lock_freeup...28
4.1.2.4. lock_cancel...29
4.1.2.5. lock_unlock..29
4.1.2.6. lock_giveup..29
4.1.3. Serialization Types..29
4.1.3.1. Global Serialization: PRTPKG...29
4.1.3.2. Driver Config Serialization: PORTDB...30
4.1.3.3. Collection Serialization: PORTSU{*|collection}...30

Page 2 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

4.1.3.3.1. All collections: PORTSU_*..31
4.1.3.3.2. One collection: PORTSU_collectionname...31
4.1.3.4. Port Serialization: MAKE_portname...31
4.1.3.5. Build Serialization: WORK_portname_version_buildname.......................................31
4.1.3.6. Deploy Serialization: PKG_portname_version_buildname...32
4.2. Inter-process Communication..32
4.2.1. Signal Processing...32
4.2.2. Shared Files...32
4.2.2.1. Broadcast, Request, and Notices Queues..32
4.2.2.1.1. Commonwealth Broadcast Queue...32
4.2.2.1.2. Cell Request Queues...33
4.2.2.1.3. Cell Notices Queues...33
5. Package Components..33
6. Command Information: Help, Prolog, Sample Outputs...............................33
6.1. Output: prtpkg h [contains TODO items]..33
6.2. Output: prtpkg h syntax [contains TODO items]...34
6.3. Output: prtpkg h global [contains TOTO items]...35
6.4. Output: prtpkg h prt [entirely TODO items]...35
6.5. Output: prtpkg h pkg [entirely TODO items]...37
6.6. Prolog: prtpkgbatch [contains TODO items]...37
6.7. Prolog: prtpkglog [in transition to data reorg]..38
6.8. Output: prtpkglog [in transition to data reorg]...38
6.9. Output: cat /usr/prtpkg/cells/dlcz[ZD]/CRUX-3.2/pkgsb3/log/00031/06.log.......38
6.10. Output: cat /usr/prtpkg/CRUX-3.2/prtpkg_by_col.20170130-161126.log..........41
6.11. Output: pkg_basenames [in transition to data reorg]..41
6.12. Prolog: localize_ports [in transition to data reorg]...42
6.13. Prolog: missing_packages [in transition to data reorg]......................................42
6.14. Prolog: missing_packages_doit (gawk) [in transition to data reorg].................42
6.15. Output: misspkglog [in transition to data reorg]..42
6.16. Prolog: pkgaddconf [targets contain TODO items]...42
6.17. Prolog: prtlist [in transition to data reorg]..43
6.18. Prolog: prtlist_packages (gawk) [in transition to data reorg]............................43
6.19. Output: prtlist [in transition to data reorg]..43
6.20. Prolog: prtpkg_symlink (gawk)..44
6.21. Prolog: prtpkginfo [in transition to data reorg]...44
6.22. Output: prtpkginfo -h [in transition to data reorg]...44
6.23. Prolog: validate_builds [very early new program]..44
6.24. Prolog: validate_symports [in transition from varports]....................................45
6.25. Prolog: validate_symports_links (gawk) [in transition from varports].............45
6.26. Prolog: whatpkg [in transition to WHATPKG_ variables].................................45

Page 3 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

6.27. Prolog: whatpkg_2ndline (gawk) [in transition to WHATPKG_ variables]......45
6.28. Prolog: whatpkg_pkginfo (gawk) [in transition to WHATPKG_ variables]......45
6.29. Prolog: whatpkg_prtpkgtxt (gawk) [in transition to WHATPKG_ variables]...46
6.30. Prolog: whatprt [in transition to WHATPRT_ variables]...................................46
6.31. Prolog: whatprt_doit (gawk) [in transition to WHATPRT_ variables]..............46

Page 4 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

1. Historical Software Maintenance in CRUX—KISS

1.1. What Is CRUX? What is KISS?

CRUX is a source-based Linux distribution that lists the KISS (Keep It Simple,
Stupid) design concept as its primary design goal. While these days that can seem
highly unorthodox for a Linux distribution, it is the core of the UNIX Philosophy
as described by Eric S. Raymond in The Art of UNIX Programming (specifically
The Unix Philosophy in One Lesson chapter).

A highly significant derived design goal for CRUX has emerged in recent years—
systemd has no place in a CRUX systemi. That amazingly popular alternative to
the idea of the simple init dæmon, a feature of UNIX from its early years (the
relatively new sysvinit package originated ~1980), is staunchly considered
egregiously flaunting of the UNIX Philosophy by CRUX developers. See the other
chapters of Raymond’s treatise for the important details.

The KISS principle has been applied to CRUX software maintenance from its
inception. For instance, CRUX does not repackage or even install the kernel.
Except for providing kernel source and a suitable .config file (see Section 3.3 for
details), CRUX ignores kernel maintenance, leaving it to the sysadmin to decide
what to do according to the kernel’s README file and kernel.org announcements.

1.2. In The Beginning, pkgutils

In the early days of CRUX, founding developer Per Liden created the heart of
CRUX software maintenance, the pkgutils package that facilitates automating
the standard procedure for introducing FOSS packages into a system:

1. download the package source code tarball(s),

2. extract the tarball content into a usually temporary build (aka work) directory,

3. configure the build directory for building usually via a configure script,

4. build (compile and link, etc.) the package using a make command, and

5. install the built results into the system, usually using a make install
command.

This final step must be performed by the superuser who is responsible for the
availability and integrity of the platform.

Page 5 of 48

https://en.wikipedia.org/wiki/Tar_(computing)
https://www.kernel.org/
https://en.wikipedia.org/wiki/Init
https://en.wikipedia.org/wiki/Systemd
http://www.catb.org/esr/writings/taoup/html/ch01s07.html
http://www.catb.org/esr/writings/taoup/html/
https://crux.nu/Main/About

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

With pkgutils, the entirety of the standard procedure is within the purview of the
pkgmk command with a twist: the final phase does not “install” the package into
the system doing the building; i.e., the root filesystem treeii. Instead, an
alternative tree is defined, usually the build directory itself, via a DESTDIR=
parameter supported by the make install configuration for the package. The
final task of pkgmk processing, which is outside the standard procedure, is to create
a CRUX package file (aka package tarball) that is intended to be extracted into the
real root tree of the target system by the superuser. A security advantage of this
approach to make install is that full superuser authority is not necessary.
Instead, the fakeroot package can be used to define privileged inode metadata in
a tar, not in the logical root filesystem, without allowing any superuser authority.
CRUX encourages using fakeroot with a no-login user for everything pkgmk does.
A foundational concept of pkgutils maintenance, then, is building binary
executables from source must be separate from installing them into a system, and
that the build results should be encapsulated in a binary-code package file that can
be copied to and installed into a suitable CRUX platform without requiring the
source first be built on that platform.

The pkgadd command of the pkgutils package is run to install/update CRUX
package files into the running or mounted target system, which of course is only
permitted for that system’s superuser. Uninstalling CRUX package files is the job
of the pkgrm command. Both manipulate the /var/lib/pkg/db flat file that
contains the inventory of packages installed on that system, including their
versions and all files installed on their behalf. Use rejmerge to resolve file update
rejections.

Note the pkgutils methodology remains fundamental to CRUX software
maintenance, and has not changed dramatically for almost two decades. However,
it is completely ambivalent regarding just what it is maintaining. Pkgmk learns
nothing outside the package directory in which it is invoked save its configuration
as defined via command parameters and a configuration file. It does not even care
to know the path of the package directory. Also called a port, the package directory
contains all the package-specific data pkgmk needs to do its job except the actual
source tarballs involved. The port’s Pkgfile text file is central. In fact it is
sourcable bash code (not directly executable) that contains a build() function that
is invoked by pkgmk, itself a fully executable bash script, to perform steps 3–5 of
the standard procedure (not including the actual installation into a platform as

Page 6 of 48

https://en.wikipedia.org/wiki/Ports_collection
https://en.wikipedia.org/wiki/Inode

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

previously discussed). CRUX developers still highly esteem pkgutils’ aloofness
from package metadata and its abhorrence of activity logging.

Thus, pkgutils is of next to no use when it comes to distinguishing multiple ports
of any particular package from each other and selecting the ports to be processed
by pkgutils.

1.3. Supporting Different Package Configurations: ports, prt-get

CRUX had grown to the point of organizing package ports with similar
characteristics together into directories of ports called collections. The officially
supported core, opt, compat-32, xorg, and quasi-supported contrib collections
are simply divisions of the packages considered canonical to CRUX—there is only
one port per package in this set of collections.

The ports command (and package) was introduced by Per Liden to assist with
maintenance of entire collections. Its biggest feature is provided via the -u flag,
which causes updating the specific (or by default all activated) local mirror
collections with any changes made to the master collections available via the
Internet. Thus, collection maintenance in CRUX is undertaken on a pull basis.
Also, the rsync model is used, so local collection mirrors have ports deleted when
their Internet counterparts are deleted. Consequently, only the known current
version of any port is ever available in any particular collection, or not—mirrored
collections alone can contain back-level or dropped ports, but only as only as long
as they remain unsynchronized with their masters.

However, as expected, folks who installed CRUX on their computers often found
they had a need to modify the canonical port of a package in order to accommodate
capability requirements incongruous with CRUX canon. The solution was and is to
fork the canonical port, copying it (cp -a) into a private collection, modifying its
Pkgfile and anything else in the port as needed, and using the pkgutils
commands on that port instead of the canonical port. Private collections were (and
are) named according to the sysadmin’s fancy as long as they didn’t conflict with
any other collection’s name, and these began to be shared with other CRUXers via
public repositories (just another word for collections). Port management (packages
are not static and neither are their ports) was increasingly a chore for everybody.

In response to that itch, Johannes Winkelmann scratched out the next layer of
CRUX software management infrastructure from inspiration based in the Debian
distribution’s apt-get facility. The prt-get command uses a configuration file of

Page 7 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

important options to control its processing, especially the prtdir statements that
(1) describe what local collections the tool knows about and (2) define how one of
many available ports for a particular package is selected for processing. According
to the specific prt-get subcommand the maintainer issues, the utility can invoke
pkgmk, pkgadd, and/or pkgrm as needed to bring about that prt-get subcommand’s
objective. In many cases, pkgutils commands were no longer used directly to
routinely perform CRUX software maintenance.

The prt-get subcommands sysup, depinst, and grpinst in particular greatly
simplified software maintenance by supporting a new wrinkle, dependency
handling, another important feature that became canonical to CRUX like prt-get
itself. The format of the Pkgfile was extended to allow inclusion of a
Depends on: statement that specifies a list of blank-separated packages that
need to be installed to build and/or run the package having the statement.
Although it is much more simple than other distributions’ dependency capabilities,
and not always correct as a consequence (usually when non-canonical ports are
involved), it serves as a crucial starting point for identifying the order in which
packages need to be processed.

There have been other extensions, some canonical. An inadequately documented
facility to alias depended-upon package names was added to prt-get to provide a
rudimentary package provides generic package and package depends on generic
package capacity. The /var/lib/pkg/prt-get.aliases flat file, which may be
customized as needed by an installation, defines such relationships of the first
kind. Also, some CRUXers use the opt/mpup package to help manage forked ports
—see its README file for the details (prtpkg does not yet directly support that
software). Very recently onodera announced a new p orts / p rt-get work-a like tool
on #crux. While I have not yet had the opportunity to deeply look into it, it is my
expectation it can be fit into the prtpkg framework without too much difficulty.

1.4. Official Website For Collections

https://crux.nu/portdb is the canonical resource for all known CRUX
collections, particularly for downloading the /etc/ports driver config files for the
collections, which are read by ports -u to access the collections’ master
repositories. Changes to the set of master repositories and the contents of driver
config files usually occur unannounced. In addition, the site maintains only one
release and such transitions can also occur without notice, although one can be
expected within a month following the announcement of a new CRUX release. All

Page 8 of 48

https://crux.nu/portdb
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt
https://github.com/onodera-punpun/prt

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

the canonical collections are versioned. Non-canonical collections can change
between versioned and unversioned at any time, again, often silently.

2. What prtpkg Adds to CRUX Software Maintenance

Prtpkg enhances port and package maintenance by providing the following
missing pieces in a standardized and hopefully easily adaptable manner for any
enterprise deploying one or more CRUX platforms:

2.1. In a Nutshell

2.1.1. Shared Maintenance Within or Between Systems

Prtpkg supports multiple distribution releases on a single system and/or supports
multiple systems, allowing designated systems to provide prtpkg services:
crux.nu/portdb synchronization (portdb), collection synchronization (portsu),
package building (prtpkg), and basic pkgutils (deploy) service (defined for now as
self-service). This includes tracking what specific systems and groups of systems
are running what releases and are served by what servers. Such a configuration of
multiple releases and/or systems sharing a common prtpkg maintenance
infrastructure will be referred to as a commonwealth.

2.1.2. Maintenance Activity Tracking

Prtpkg supports maintenance logging, especially the ability to know what ports are
currently installed, not just what packages are installed; plus true chronological
logging that facilitates easy commenting upon the maintenance process directly in
the logs produced (as What Mother Never Told You About VM Software Service
clearly stated in March 1983, “Rule Number Four: Always Leave Tracks”). This
includes taking snapshots into a compressed tarball of the build environment for
pkgmk including the package directory tree, currently installed ports (implicitly
pointing to their build environment snapshots), the kernel’s config file, etc.

2.1.3. Building Configurations

Prtpkg supports multiple building configurations, enabling you to both define and
know exactly how a port will be/was built; e.g., PATH and CFLAG settings inherited
by and possibly not overridden by pkgmk or the package being processed. This
facilitates (1) designating what “builddefs” you want to permit for any set of ports
and/or systems within the commonwealth, and (2) selecting the builddef variety

Page 9 of 48

http://www.leeandmelindavarian.com/Melinda/tutorial.pdf
http://www.leeandmelindavarian.com/Melinda/tutorial.pdf
http://www.leeandmelindavarian.com/Melinda/tutorial.pdf

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

(prtpkg provides default and debug, or use your own) of any or all packages you
wish to deploy on any CRUX system.

2.1.4. Maintenance Policies

This grouping of capabilities deals with defining the way software maintenance is
done and not done at the enterprise level and down to the level of individual
systems, and implementing protections against software maintenance contrary to
such policies (to help you avoid shooting yourself in the foot or worse—at the
enterprise level such disasters can be, well, disastrous).

2.2. Rationale

Together, these capabilities could be reasonably hailed as industrial-strength
CRUX software maintenance. They set the stage for enterprise-wide automated
maintenance roll-outs as well as cross-architectural package builds in the future.

The state-of-the-art for maintaining CRUX is geared to one or two completely
independent platforms. The concept of an organization maintaining hundreds (let
alone thousands) of CRUX hosts is a dream, or more likely a nightmare, for CRUX
developers. At this time it does seem the probability of an enterprise needing a
team of CRUX sysadmins is microscopic. However, as appealing to an organization
as CRUX might be vis-à-vis most Linux distributions, the problems of scaling
canonical software maintenance make the proposition too expensive to pursue.
Thus, canonical maintenance is limiting much needed wider acceptance of the
distribution, which in turn limits CRUX’ mindshare and inhibits expanding the
microscopic pool of developer resources.

The challenge for prtpkg design is envisioning a one-size-fits-all architecture that
can be coded as needed while delivering a subset most likely to be useful to a wide
center of the bell curve of potential users. The KISS concept becomes a trifle
unclear as new capabilities are added to engineering systems—it seems the system
is becoming less simple. First and foremost, new tricks must have compelling
justification to be incorporated—there must be a crying need for the features
within a significant subset of the installed base. Once past that requirement, the
design must be straight-forward, clear, near-universal in applicability, easily
configured and customized… well, what ESR wrote already. Perhaps this should
be termed KIASAPS (Keep It As Simple As Possible, Smartie). But in reality it is
part and parcel to KISS, just not so obvious. Simple is not always orthogonal to
complex (Exhibit A: the current Linux kernel vis-à-vis version 0.01 released

Page 10 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

September 17, 1991). Making simplicity a higher goal than ensuring security,
integrity, and perhaps maintainability is unwise.

It may be prtpkg will never become canonical. That is fine. It may even be prtpkg
will never be utilized by anyone besides its originator. That, however, is not fine,
as previously discussed. But either way, folks should be aware it is available, what
it does, and how. If you’re a CRUX developer, please avoid breaking it beyond
repair if at all possible. If there is sufficient interest, I am willing to pursue
establishing a git repo before putting up my first port of the prtpkg package (I
still need to finish the first releasable source tarball!), which would most likely
compel me to port this still incomplete document to some other format.

2.3. What prtpkg Does Not Add to CRUX Software Maintenance

Note prtpkg does not require any changes to any canonical packages, with one tiny
post-pkgadd exception: the software maintenance command executables are
renamed to hide them from anything that would directly invoke them. In their
places prtpkg substitutes executables that filter out with suitable error messages
any requests that are not permitted because they (1) are contraindicated by the
maintenance policies of the enterprise or (2) could produce changes that corrupt
the prtpkg view of reality (not to mention could be unknown to you, the system
administrator). If the request is harmless, the front-ending code logs any non-
prtpkg invocation and passes the request (via execvr(2) or the dash built-in
command exec as is appropriate) to the renamed original unmodified ports,
prt-get, prt-cache, pkgmk, pkgadd, or pkgrm executable for normal processing. It
is likely mpup will be added to this list as well. Work on these front-ends has yet to
commence.

Page 11 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3. Design Concepts

3.1. Graphical Overview

This graphic diagrams how
canonical CRUX software building
works (blue objects) and what
prtpkg adds (red objects). The
rectangles are processes (some
nested), the ellipses are data areas
in the system, and the stars are
Internet resources (imagine you’re
looking down at them hanging over
the boxes and ellipses, downloading
data into the boxes). The portdb
command at the top updates
/etc/ports trees for all affected
releases (the canonical approach
requires the sysadmin to do this
manually if at all). Similarly, the portsu commands, invoking ports -u
commands, manage the release-specific /usr/ports trees. The prtpkg commands
ride herd on prt-get commands that cd into the /usr/ports/collection/port
directories and launch pkgmk commands that download the upstream distfiles, set
up the work directories, expand the source tarballs, then build the packages and
“install” them into CRUX package files. What the canonical tools don’t know is the
prtpkg commands set things up according to the enterprise’s desired build
definitions and that the package files are being stored in locations that show
exactly how and from what they were built.

If you consider the diagram split vertically down the middle, you see two different
build cellsiii, but there can be more cells in the commonwealth, including boot and
chroot cells on different hardware platforms both real and virtual. The
associations shown could be 3.3 boot and 3.2 chroot instead, as this is only an
illustration. Notice from the canonical perspective, the two cells are close to
identical and are totally unaware of each other’s existence—the only differences
are the versioned collections and ports they process and the likely different cell
components, especially versioned and builddefed build tools within the cells’
PATH definitions. Without prtpkg involvement, this diagram requires two bootable
CRUX systems or a lot of programming and system administration effort.

Page 12 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.2. Introducing Commonwealth: Global and Local Concepts

To permit a single prtpkg platform to be a prtpkg porteriv, builderv, or
deployervi for multiple releases, and in consideration of the ports -u command’s
requirement that the /etc/ports and /usr/ports trees of the system running it
contain the data it is to process, prtpkg is designed to use a chroot approach for
maintaining distribution releases other than that deployed in the prtpkg
platform’s boot cell. While initially prtpkg will not explicitly support prtpkg
platforms that are virtual machines or containers, it may come to light prtpkg
really cannot distinguish such from real prtpkg platforms and so supports them
inherently. The take-away point of this paragraph is prtpkg is designed to support
cells, not systems; i.e., there’s not much difference to prtpkg between a system and
a cell unless the system is not also a cell (then it just isn’t of interest). When a cell
deploys prtget-built packages within itself, that should not interfere with any
system persona the cell might have, just as that is true for canonical pkgutils
activities within a non-prtpkg CRUX system (/etc/pkgadd.conf and rejmerge are
your friends). However, understand such system administration concerns are
outside the scope of the prtpkg package documentation.

3.2.1. Boot and chroot Cells For /etc, /usr, and /var

Whether /etc, /usr, and /var reside in the boot cell’s root trunk or in a chroot jail
elsewhere in boot cell’s tree, prtpkg considers these construction sites
egalitarianly and calls them both cells, jail or not (prtpkg chroot jails contain only
one cell).

3.2.1.1. Concepts For chroot Cells

The initial prtpkg chroot design concepts are:

1. prtpkg chroot cells do not have a system persona—they do prtpkg work
exclusively (non-prtpkg CRUX systems booted and chrooted are of course free to
perform canonical software maintenance including simply running pkgadd using
prtpkg-built packages without the benefit of prtpkg tracking and serialization
safeguards);

2. prtpkg chroot cells are treated the same as real machine boot cells, virtual
machine and container boot cells, and any virtual systems’ chroot cells; and

3. prtpkg chroot commands use only local chroot cells (this restriction may be
relaxed if testing reveals no logical or performance impediments when chrooting
into cells accessed via network filesystems).

Page 13 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.2.2. Senior and Junior Cells For portdb

Cells are also distinguished by their proximity to the portdb process. Those that
are designated as senior cells by the enterprise have their /etc/ports tree
directly updated by portdb, which is designed to closely mirror crux.nu/portdb by
updating at least once every 24 hours under control of a crontab entry. On the
other hand, the /etc/ports trees of junior cells are updated according to the cells’
update policies as defined and implemented by the sysadmin; e.g., when the phase
of the moon is just right, examine the state of the associated senior cell’s
/etc/ports tree and update the junior cell’s /etc/ports contents with their
senior counterparts by creating and running a well-commented prtpkgbatch file
of one or more cp -p and/or rm commands, thereby leaving excellent tracks.
Consider senior cells as subscribed to portdb updates and junior cells as not.
The prtpkg design requires senior cells to fully mirror all /etc/ports content of
which crux.nu/portdb is cognizant. While prtpkg fully supports the retention in
senior and junior /etc/ports trees of driver config files that are no longer
available from crux.nu/portdb, such retention is not a requirement. There must
be at least one senior cell in a commonwealth for every distribution release
therein.

3.2.3. Prime, usrport, and symport Cells For portsu

Lastly, cells are also distinguished by their proximity to the portsu process. Those
that are designated as prime cells by the enterprise have their /usr/ports tree
directly updated by portsu, which is designed to closely mirror the repositories
identified in the active driver config files of the cell’s /etc/ports tree, by updating
at least once every 24 hours under control of a crontab entry. On the other hand,
the /usr/ports trees of usrport and symport cells are never so updated, but only
according to the cells’ update policies as defined and implemented by the sysadmin.
Consider prime cells as subscribed to portsu updates and usrport and symport
cells as not. While usrport cells can be updated using portsu or even ports -u
directly, that is not required and in some situations using ports -u directly may
be inadvisable. There need not be prtdir statements for every active collection in
the prime cell’s /etc/prt-get.conf file but every commonwealth probably ought
to have at least one prime cell for each included release that does. To prevent
portsu from unknowingly updating the same port multiple times, symport layouts
(see Section 3.4.1 for the explanation) must not be used in prime cells; symport
layouts are only supported for symport cells. While it is anticipated prime cells
will be senior cells as well, that is not required. There must be at least one prime
cell in a commonwealth for every distribution release therein. Since symport

Page 14 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

cells link into a particular prime or usrport cell, an entanglement of these cells is
recognized (see Section 3.4.2 for details).

3.2.4. Filesystems

In a multi-prtpkg-platform commonwealth, some of the data managed can and
must be shared between cells via a network filesystem and some, like the
/etc/*.conf files and the /var tree, cannot. Well, they could if they could be…
well, a lot of things, but it’s really easier to just keep them local than attempting to
make them sharable. It’s a similar problem to supporting multiple releases on one
system which is solved using chroot cells. In fact chroot cells should be shareable
across systems with the proper serializations, but in many cases network overhead
and propagation delays can render the performance inadequate for things like
rebuilding firefox or qt5.

There are several network filesystem packages that are well-supported on Linux
distributions. None are trivial to plan, establish, and maintain. NFS is CRUX-
canonical (see opt/nfs-utils) and is installable via the ISO distribution. Samba
is the other canonical network filesystem (see opt/samba), but it’s only for
masochists or those who work for a sadist (it should be workable for prtpkg if you
can control mangling and security adequately). If you’re willing and able to port
the software, AFS is great if you can swallow its Kerberos dependency, Ceph is up
and coming (though for now its CephFS component is still beta quality), and the
Plan 9 paradigm called 9P developed by Ritchie and Pike might be a good fit for
your enterprise’s requirements. The point here is if prtpkg is your enterprise’s
first foray into shared filesystems, you really need to look at the big picture for
filesystem sharing, not just what prtpkg requires, to ensure the effort expended
provides the greatest benefit. It’s better to get it right the first time (yes, there’s
“Rule Number Three: Don’t Expect It To Work” but that is only in regard to always
having a dependable backout plan at the ready when making any system change).

All that prtpkg wants from a network filesystem is the fundamentals—enable the
cells in the commonwealth to cooperatively share a common file namespace. It
does not even require that filesystem provide intrinsic locking support (see Section
4.1 for details about the prtpkg resource serialization facility). Of course, prtpkg
locks should work just fine on networking filesystems that have their own locking
mechanisms, so prtpkg can probably just ignore any such filesystem locking.

Page 15 of 48

http://doc.cat-v.org/inferno/4th_edition/styx
https://en.wikipedia.org/wiki/9P_(protocol)
http://www.penguincomputing.com/company/blog/why-we-love-ceph/
https://en.wikipedia.org/wiki/Andrew_File_System
https://www.samba.org/samba/docs/using_samba/ch09.html
https://www.samba.org/samba/docs/using_samba/ch08.html
https://en.wikipedia.org/wiki/Samba_(software)
https://en.wikipedia.org/wiki/Network_File_System
https://www.ibm.com/developerworks/library/l-network-filesystems/

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

The location of senior and prime cells needs to be carefully considered. Because
they are directly updated by portdb and portsu respectively, they need to be
exported into shared namespace if those processes are not running in those cells.
Cells’ prtpkg processes do need to be local to the cell, though, for performance
considerations. Since it is usually better to avoid exporting boot cells’ root
filesystems, senior and prime cells should probably be limited to chroot cells if
their portdb and portsu processes will run remotely from them. It’s probably
better for senior and prime cells to not have a system persona, as well.
Considerations may indicate one or more boot cells’ root filesystems need to be
exported into the network filesystem tree, despite best practices. Security risks
may be acceptable. Network performance may not be a bottleneck. You decide.

For now, prtpkg is not testing core/acl and selinux configurations. Let us know
how that goes if you venture forth so prtpkg can better support everyone.

An unscheduled outage of the shared commonwealth components, especially the
lock directories, is a critical problem if any update locks other than the PRTPKG lock
are in granted state at the time of the outage. These resources should be deployed
on the highest-availability system(s) possible to make such difficult recovery tasks
as unlikely as possible. Each cell in the commonwealth needs to maintain a
PRTPKG state indicator in a local filesystem indicating if the shared prtpkg
infrastructure is functioning or not using a 60-second watchdog function, possibly
launched via crontab. The craziness that can ensue from losing the shared
filesystem is another reason not to chroot into remote cells.

3.2.5. Userids and Groupids

In addition to the pkgmk userid and nobody groupid common to canonical CRUX
software maintenance (that prtpkg requires), a prtpkg userid and groupid are
recommended to facilitate limiting superuser authority available during software
maintenance within a commonwealth. The userid should have limited sudo
authorization to minimize risk (but prtpkg does not require sudo), and the groupid
should act the same as wheel commonly does for root (or just use wheel).

Of course, in a commonwealth, all userids and groupids need to have consistent
uids and gids across cells. While opt/openldap is canonical, it might be simpler to
develop scripts to perform the needed maintenance in each cell using the request
queue facility described in Section 4.2.

Page 16 of 48

http://www.tldp.org/HOWTO/NFS-HOWTO/security.html

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.2.6. Environment Variables
3.2.6.1. BOOTOS

A boot cell’s /etc/ports, /usr/ports, /var/log, and /var/lib/pkg trees and
/etc/ports/pkgmk.conf, /etc/ports/pkgadd.conf, and /etc/ports/prt-
get.conf files are associated with the distribution release the cell last booted.
Those trees in a chroot cell are likewise associated with the distribution release
installed in the cell. That release is defined in the BOOTOS environment variable
added to /etc/rc.conf file. For a boot cell it is automatically exported to every
new session by an addition to /etc/rc, but for a chroot session it may need to be
reexported as part of the session’s initialization.

3.2.6.2. ROOTFS

Also new to /etc/rc.conf is the ROOTFS environment variable, the filesystem
identifier of the cell’s root filesystem.

For cells using a filesystem as their root filesystem (true for all boot cells), prtpkg
expects the ROOTFS string will be maintained as the name of a file in the root
filesystem’s trunk, having the form [label]; e.g., [XY]. It is recommended that
label (without the enclosing brackets—mount -l shows any such label in
brackets) be in fact the partition’s, volume’s, and/or filesystem’s label (see the
mkfs_XX script for a template to build an ext4 partition accordingly).

For chroot cells not using their own mounted filesystem, it is required the
chroot’s trunk contain a ROOTFS file that shows the label is not a filesystem label;
e.g., [SSD1_xyzzy] where the SSD1 is the label of the filesystem housing the
chroot tree. This string is defined as ROOTFS in the chrooted /etc/rc.conf.

This filesystem identification convention requires the ROOTFS file is the only file in
its directory conforming to that format; i.e., starting with a left bracket and ending
with a right bracket.

For chroot cells, ROOTFS must be exported to the environment as part of the
chroot session’s initialization since a chroot session does not boot up.

3.2.6.3. PRTPKG_CELL

The PRTPKG_CELL variable uniquely identifies the local cell for prtpkg purposes. It
is simply the concatenation of the cell’s /etc/rc.conf HOSTNAME value (returned by
the hostname command) and the cell’s ROOTFS value (see Section 3.2.6.2); e.g.,

Page 17 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

server1[HDD2], server4[SSD3_CRUX-3.4_prime]. PRTPKG_CELL is very nice in a
PS1 prompt.

3.3. Installs and Release Updates For Cells

The canonical approach to installation or update of a CRUX distribution release
uses (for update) a scheduled outage of the target system (for install that’s
unnecessary) during which the release’s ISO is booted and the system is installed
or updated as needed. Within a prtpkg commonwealth, this canonical processing
is expanded, mostly via a merge and enhancement of the canonical setup scripts
into the prtpkg_setup script, plus the new mk_cell and up_cell scripts (for
chroot cells only that need not the ISO environment). One of several paths is
taken according to the type of commonwealth involved and commonwealth
processing can precede and/or follow the canonical package installation phase of
script’s activity.

Other differences between canonical and prtpkg installation/updating should be
noted. If prtpkg_setup discovers a prtpkg root filesystem mounted as /mnt, it
assumes that is the target and does not ask for the target’s location. Also,
prtpkg_setup asks for the host name of the new prtpkg platform while setup
defers that to editing /etc/rc.conf in the chroot phase of the install.

3.3.1. Kernel Maintenance

The ISO boots a recent stable Linux kernel built using the ISO’s .config file
which the ISO contains along with the vanilla kernel source tarball that kernel
was built from plus any applicable vanilla patches. The ISO’s setup script looks in
the target’s /usr/src tree for the ISO kernel’s version. If it’s not there, (1) the
kernel tarball is expanded into the target’s /usr/src tree, (2) any kernel patches
the ISO contains are applied, (3) the ISO’s default .config file is copied into the
new tree, and (4) if the target’s /lib/modules tree for the release does not exist, it
is created and the target system’s module dependencies are pre-populated via a
depmod -b $ROOT -a $KERNEL_VERSION command. Other than this, CRUX
completely ignores kernel maintenance. The release-dependent CRUX Handbook
expects the sysadmin installing or updating the system will chroot into the target
root filesystem from the ISO system and configure, build, and install a kernel
therefrom (not necessarily the one the ISO may have expanded). CRUX does not
provide, let alone maintain, a kernel package that can be processed by pkgutils.
As most CRUXers cannot wait for a new CRUX release every 12-18 months to
update their kernels, they do what the CRUX developers expect: they retrieve

Page 18 of 48

https://crux.nu/Main/Handbook3-3
https://crux.nu/Main/Handbook3-3

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

kernel releases and/or patches from kernel.org, expand/apply them, customize
the .config files as needed by the enterprise and the platforms, and build and
install the new kernels, all according to the kernel’s README document, just as they
did for the install or upgrade. CRUX development neither adds to kernel
distributions nor engineers CRUX-specific kernel patches.

All of this is also true for prtpkg software maintenance systems; however, an
enterprise is completely at liberty to add its own kernel software maintenance
policy and automata to its own commonwealth(s). Contribution of same to the
community is certainly encouraged—there will hopefully be many organizations
with similar goals in this regard.

3.3.2. Installing Into Boot Cells

Installs into boot cells begin in the canonical way by booting the release ISO on
the not-yet-a-cell system.

3.3.2.1. Pre-existing Commonwealth

For installs involving a pre-existing commonwealth, some sysadmin legerdemain
installs any needed networking filesystem software into the RAM-resident root
tree, configures it, and mounts all needed network filesystems into the target root
tree, usually mounted as /mnt in the RAM-resident root tree, before running the
prtpkg_setup script instead of the canonical setup script to convert the freshly
formatted target root tree into a new boot cell root tree. This includes obtaining
the PRTPKG update lock to safely add the cell to the commonwealth (refer to Section
4.1.3.1 for details). Experience with installing new platforms into existing
commonwealths may lead to revisions in this approach that will ease the
complexity of the legerdemain phase, possibly with goodly amounts of prtpkg
package and/or homegrown automation.

3.3.2.2. New Single-platform Commonwealth

If a single-prtpkg-platform commonwealth is being co-installed with the boot cell,
a /usr/prtpkg tree is simply established in the target cell’s root tree.

3.3.2.3. New Multi-platform Commonwealth

However, if a multi-prtpkg-platform commonwealth is being co-installed (only NFS
is installable from the ISO and must be installed for this situation), prtpkg_setup
configures the boot cell’s network filesystem server to export its /usr/prtpkg tree
per a dialog with the sysadmin (that may prove to involve homegrown scripts).

Page 19 of 48

https://www.kernel.org/

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.3.3. Installing Into chroot Cells

For new chroot cells, installation is accomplished by running the mk_cell script in
the associated boot cell as a normal command without needing to reboot anything
(TODO really soon). Such installs are only supported from boot cells already
within a commonwealth.

3.3.4. Release Updates—Overview

Updates are only performed for cells already within a commonwealth. There are
two aspects of the process regardless of the cell types: (1) the update of the core
toolchain packages and the BOOTOS in the /etc/rc.conf file, and (2) the update of
versioned collections to the new version; e.g., in file /etc/ports/core.rsync, the
line collection=ports/crux-3.2/core/ becomes collection=ports/crux-
3.3/core/.

3.3.4.1. Phase 1 for boot Cells

For boot cells, the first phase is effected by booting the versioned CRUX ISO in the
cell being updated and using the prtpkg_setup script in place of the ISO’s setup
script—not radically different from a canonical update.

3.3.4.2. Phase 1 for chroot Cells

For chroot cells, the first phase is effected by running the up_cell script in the
chroot cell as a normal command without needing to reboot anything (TODO
really soon).

3.3.4.3. Phase 2 for All Cells (portdb update)

For all cells (but see Section 3.2.2 for some important nuances), the second phase is
handled by the portdb script and its update lock. Usually this change occurs some
time after the new release has been formally announced. If a senior cell (see the
same section) for the release does not exist in the commonwealth when that
occurs, the versioned build config files are inactively held in an available senior
cell until an appropriate senior cell for them has been established.

3.4. Introducing Layers: releases, symports, mixes, builds, and deploys

[Include target info from pkgaddconf prologue (6.16) and update there and here]

Page 20 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.4.1. Symport Collection Sets

Customary local collection trees in /usr/ports (used by prime and usrport cells in
a prtpkg commonwealth) are arranged as a directory of collection subdirectories
with each collection subdirectory containing one port (package directory) for every
package in the collection. This is the data organization ports -u works with. The
prt-get prtdir statements were designed to permit the sysadmin to order the
collections such that different port versions of the same package would be selected
according to site’s preferences with the most-preferred collection earliest in the file.
To handle anomalies for particular packages in the ordering, a prtdir statement
identifying one or more specific ports in a certain collection can be placed before
those of the collections more preferred than that certain collection that also contain
ports for those packages. Thus, the prt-get package selection algorithm finds
those ports first and selects them.

A symport organization avoids the need for package-specific prtdir statements by
returning to an organization of collections such that there is only one port for any
package within the entire set of collections. This also eliminates the need to get
the order of the prtdir statements right—the prtdir statements effectively define
merely the set of collections prt-get will work with, even though prt-get
processes the symport’s set of collections no differently from a prime or usrport
cell’s set.

As the name suggests, symport layouts use symlinks into a prime or usrport cell’s
/usr/ports tree to achieve this magic. In establishing a symport tree, the upper
level directory of collections is identical to that of the prime or usrport cell;
however, the next level usually contains only symlinks to package directories that
were or will soon be actually built using the symport tree. If the sysadmin wants
to change the port of packageX from that of collection xyzzy to that of collection
plugh, he/she makes the following changes:

rm /usr/symports/xyzzy/packageX
ln -s ../../../ports/plugh/packageX /usr/symports/plugh

resulting in /usr/symports/plugh/packageX.

Using symport layouts saves some filesystem space and some ports -u processing
but complicates dependency resolution somewhat as the prt-cache --test
commands using subcommands sysup, depinst, or grpinst for the symport cell
must be run against the entangled prime or usrport cell’s /usr/ports tree but
using the symport cell’s port selection preferences. It would be a good idea to

Page 21 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

maintain that translation of the prtdir statements as part of the symport cell’s
maintenance policy (remember prt-get can be told which prt-get.conf file to use
as a command-line argument and prtdir statements can specify absolute paths for
the collection directories).

3.4.2. Mixed Cells

Since symport cells link into a particular prime or usrport cell, an entanglement
between these cells is recognized. Cells having such entanglements are said to be
mixed and sets of entangled cells are called mixes. A mix is defined by a prime or
usrport cell followed by the entangled symport cells sorted by collating sequence;
e.g.,

server3[YY] server1[ZZ] server2[XX_3.3] server4[WW_3.3]

where server3[YY] is a prime cell and the rest are all symport cells. The
/usr/prtpkg/mixes trunk holds these single-line mix definition files and PORTSU
lock requests by a mixed cell are automatically converted to a lock request for the
mix. It should be apparent a symport cell can be mixed with only one prime or
usrport cell. Like groups, names of mixes may not have the same format as
names of cells.

3.5. Introducing Relationships: porters, builders, and deployers

[Develop explanation and relate maintenance roles: which suppliers serve which
consumers.]

3.6. Introducing Batches: prtpkgbatch and its *.prtpkg files

[Explain prtpkgbatch processing and prtpkg subcommand micromanaging]

3.7. Introducing New Configuration Files: build.conf and deploy.conf

[Explain what they do and their formats.]

3.8. Introducing /usr/prtpkg and Where To Find Everything

To accommodate these new variables and processing realignments, it is necessary
to transparently extend the canonical organization of the data manipulated by
CRUX software maintenance. This begins with the addition of a tree to hold the
commonwealth-wide extra information. The /usr tree is an appropriate location
for this trunk because this data must be shareable across multiple systems, but not

Page 22 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

in /usr/share because much of the data will be too volatile for the traditional role
of that tree. So it was decided to appropriate /usr/prtpkg for this tree.

The root tier holds the following trunks or anchors. Note that prtpkg strives to
support symlinking as much as possible; indeed, /usr/prtpkg itself can be an
anchor, if, for example, you want it in a different filesystem from the filesystem
containing /usr for some reason like not wanting to expose all of /usr to other
systems. Just remember to ensure dereferences function across multiple platforms
as needed (and understand the canonical CRUX software maintenance packages
are in general quite a bit less tolerant of symlinks even within a single cell).

3.8.1. /usr/prtpkg/release

These inodes anchor the trees for particular versions of any software distribution
having ports collections and associated support data compatible with the CRUX
maintenance methodology. They are named in the format distname-
version.release; e.g., CRUX-3.2, CRUX-3.3.

3.8.2. /usr/prtpkg/broadcasts

This inode is (or anchors) a flat file to which requests and notices to be processed
by every cell’s commonwealth coordination dæmon are appended. The dæmons
receive the requests by piping a tail -f command for the queue into their
while read loops. If a cell is not active when a request is added then the request
is effectively ignored by that cell. See Section 4.2.2.1.1 for more information.

3.8.3. /usr/prtpkg/builds

This inode anchors build-definition trees that can be selected for building ports
according to a specific combination of options external to the port definition. These
can include hardware models/versions, performance objectives, debugging features,
linkage attributes—whatever features are desired to be used by one or more
packages for one or more systems that can be imposed on package builds outside of
the packages proper (yes, systems, not just cells—package files built under prtpkg
can be installed into non-prtpkg CRUX systems). Build definitions do not preclude
any package from overriding pieces of the definition. They express the desires of
the sysadmin for the package to support that set of features. However, this is in no
way a means to describe common package configuration specifications such as the
Gentoo distribution’s USE facility provides; rather, it is intended to target run-
time options of the system’s build tools; e.g., compilers and linkers. Like the
dependency facility, it is not designed to be comprehensive and infallible, but only

Page 23 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

to facilitate organization and methodologies that enable building, for example,
production and debugging versions of a port, hopefully without needing to modify
the port itself. Two are provided by the prtpkg package: default and debug, but
enterprises can add as many as are useful to them, and perhaps such can be
shared as ports have been, to the benefit of all.

3.8.4. /usr/prtpkg/cells

This tree anchors a tree for every cell participating in the commonwealth. Cells
are identified via strings conforming to the format described in Section 3.2.6.3 and
each cell maintains its own as environment variable PRTPKG_CELL. The cell trees
anchored in /usr/prtpkg/cells are described in Section 3.8.15.

3.8.5. /usr/prtpkg/groups

Similar to /usr/prtpkg/cells, /usr/prtpkg/groups anchors trees that define
groups of cells and/or groups (a group may include cells and groups) as is useful to
the enterprise. Note that a group name cannot conform to the cell name format to
preclude being misidentified as a cell. Group definitions that contain no trees are
supported. It is expected the inodes in the /usr/prtpkg/groups directory are
directories containing relative symlinks to trees in cells’ or groups’ trunks as is
appropriate; e.g.,

cellname → ../../cells/cellname
groupname → ../groupname

Obviously loops of groupnames are unhelpful; e.g.,
groups/group1/group2 → ../group2
groups/group2/group3 → ../group3
groups/group3/group1 → ../group1

The prtpkg package currently provides no group definitions.

3.8.6. /usr/prtpkg/mixes

Somewhat similar to /usr/prtpkg/groups, /usr/prtpkg/mixes anchors a tree
that defines entanglements of symport cells with a prime or usrport cell (see
Section 3.4.2 for details). Note that the name of a mix cannot conform to the cell
name format defined in Section 3.2.6.3.

Page 24 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.8.7. /usr/prtpkg/PRTPKG

The PRTPKG tree is a queue of advisory lock bids and grants for update (exclusive)
and shared (unmodifiable) access to commonwealth-scope resources not serialized
by other locks. Refer to Section 4.1.3.1 for further details.

3.8.8. /usr/prtpkg/PORTDB

The PORTDB tree is a queue of advisory lock bids and grants for update (exclusive)
and shared (unmodifiable) access to all senior cells’ /etc/ports trees in the
commonwealth (see Section 4.1.3.2 for details).

The subordinate tiers of /usr/prtpkg provide the following trees:

3.8.9. /usr/prtpkg/release/builders

3.8.10. /usr/prtpkg/release/deployers

3.8.11. /usr/prtpkg/release/distfiles

3.8.12. /usr/prtpkg/release/packages

3.8.13. /usr/prtpkg/release/work

3.8.14. /usr/prtpkg/release/PORTSU

A PORTSU tree is a queue of advisory lock bids and grants for update (exclusive) and
shared (unmodifiable) access to all prime cells’ /usr/ports trees subscribed to the
release (see Section 4.1.3.3 for details).

3.8.15. /usr/prtpkg/cells/cell

These inodes anchor the trees for the cells associated with this commonwealth.
They are named using the host[rootfs] format described in Section 3.2.6.3.

Page 25 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

3.8.16. /usr/prtpkg/cells/cell/prtpkg.txt

This flat file is the chronological activity log for all prtpkg maintenance performed
by this cell.

3.8.17. /usr/prtpkg/cells/cell/notices

This inode is (or anchors) a flat file to which notices to be processed by this cell’s
processes are appended. See Section 4.2.2.1.3 for more information.

3.8.18. /usr/prtpkg/cells/cell/requests

This inode is (or anchors) a flat file to which requests to be processed by this cell’s
request handler dæmon are appended. The dæmon receives the requests by piping
a tail -f command for the queue into its while read loop. If the cell is not active
when a request is added and is a chroot cell, its associated boot cell may be
requested to launch the chroot cell to begin processing its request queue. If the
inactive cell is a boot cell, then the sysadmin may need to get involved to reboot
the prtpkg platform with the ROOTFS of the needed boot cell. See Section 4.2.2.1.2
for more information.

3.8.19. /usr/prtpkg/cells/cell/types

These inodes anchor a flat file containing a single line of three tokens identifying
the cell’s type attributes in the order shown: boot or chroot, senior or junior,
and prime or usrport or symport; e.g., chroot senior usrport.

3.9. Mapping Old Commands Into New Commands

[relocate from prtpkg h syntax (6.2) & explain port creation process support]

4. Processing Organization

We start detailing processing organization by looking at how to keep multiple
releases and/or parallel processes on the same or different prtpkg platforms from
negatively interfering with each other.

4.1. Resource Serialization (Locks)

To prevent maintenance processes from stepping on each other’s toes, there is a
need for those processes to communicate their serialization requirements and for
prtpkg’s logic to coordinate those needs, acting like a traffic light (but it is up to
those processes to obey the traffic signals to prevent collisions!). This approach is

Page 26 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

termed advisory locking. Processes requesting a lock will be blocked until the lock
becomes available (for some tasks, grants can be blocked for hours). Processes may
examine the lock request queues prior to making lock requests to decide, possibly
with user input, whether to do something else rather than wait, or to go ahead
with what looks to be a short enough wait. The ability to cancel a pending lock
request and relinquish ownership of a held lock when a maintenance process is
terminating prematurely is also required.

A multi-prtpkg-platform commonwealth is best served by a distributed lock
management solution. As a single-prtpkg-platform commonwealth can grow into
such a requirement, a single DLM-capable mechanism should provide all prtpkg
advisory locking even when no networked filesystems are involved. The prtpkg
resource serialization facility uses its own NFS2-style; i.e, stateless, l ock file
mechanism built upon shared directories that are queues containing flat files that
are lock requests, both pending and granted (KISS). This locking facility does not
even need to itself be explicitly serialized as distributed filesystem and time-of-day
syscalls are sufficiently granular and atomic for its purposes. The filenames begin
with subsecond-precision timestamps, so prtpkg platforms do need to have
synchronized clocks (NTP works very well for prtpkg purposes).

4.1.1. Serialization Classes

Three serialization classes are used to allow maximum parallelism while ensuring
data integrity or cohesiveness to those processes that need it.

The shared class provides read-only access to the resource while requiring any
modification of the resource be prevented while a shared lock is held. Multiple
processes may have shared authorization for the same resource concurrently.

The update class provides exclusive access to the resource for read-write purposes.
Only one process may hold the update lock for a resource at any time and no
shared grants can be in effect when an update right is granted. Further, no shared
rights for a resource will be granted as long as the update lock is held. All lock
requests for a given resource are processed on a FIFO basis, so a pending update
request blocks subsequent shared requests for that lock.

The floating class is more accurately a state of an update lock in which the lock is
currently disassociated from any process (“given up” by the owning process as
opposed to “freed up” or “unlocked”) but remains held by the cell to which it was
granted. Disassociation occurs when the updating process is compelled to

Page 27 of 48

https://www.eecis.udel.edu/~ntp/ntpfaq/NTP-s-def.htm
https://en.wikipedia.org/wiki/File_locking#Lock_files
https://en.wikipedia.org/wiki/File_locking#Lock_files
https://en.wikipedia.org/wiki/File_locking#Lock_files
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Lock_(computer_science)#Types

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

terminate without completing the update for which it acquired the lock.
Ownership of a floating lock can be subsequently “assumed” by another process in
the same cell that will attempt to complete the interrupted update. This might
even be an interactive shell should the sysadmin need to resolve the situation
without the benefit of suitable automation.

4.1.2. Serialization Operations

When a process needs to change its relationship to a serialized resource, it invokes
one of these operations. Processes must trap all signals that by default result in
process termination as well as the EXIT signal in order to disentangle themselves
from any lock queues in which they have active requests or grants. Disentangling
requires invocation of lock_cancel, lock_unlock, or lock_giveup as is
appropriate.

4.1.2.1. lock_obtain

Locks with which a process has no association are requested via this operation that
specifies the resource, class, and any parameters the resource type requires. The
operation blocks the requesting process as needed until the lock has been granted.

4.1.2.2. lock_assume

When an update lock has been floated because of a failure to update, only this
operation can reacquire the lock so the update can be completed. The requester is
expected to be assuming the lock to finish that job and so is distinguished from
normal update requests that might already be enqueued. As there can be no other
grants against a floating lock, the request is immediately granted. However, the
request must be made from the same cell in which the lock was given up. An error
is recognized if there is no floating lock to assume.

4.1.2.3. lock_freeup

When a process holds an update lock for a serialized resource and has completed
the update but needs to continue processing with a shared grant for the resource, it
invokes lock_freeup. This operation, only available when an update lock is being
processed, is used to convert the lock’s class to shared and to continue processing
with the shared authority. Any pending shared requests for the lock that can now
be granted will be granted before this operation returns.

Page 28 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

4.1.2.4. lock_cancel

The process’ request for a lock that has not yet been granted is removed from the
lock queue by this operation, which is normally invoked from a signal handling
routine of the process that requested the lock (otherwise it would still be blocked
waiting for the lock). If the request has been granted, this operation is treated as a
lock_unlock operation.

4.1.2.5. lock_unlock

This operation is used to drop use of the locked resource and continue processing.
Any pending requests for the lock that can now be granted will be granted before
this operation returns.

4.1.2.6. lock_giveup

This operation, only available when an update lock is being processed, is used to
convert the lock’s class to floating for premature process termination (or perhaps
there is a need to reboot the cell to complete the update). The operation does not
terminate the process, it returns so the process may continue managing its
termination.

4.1.3. Serialization Types

The specific lock types are listed in the order they must be acquired to preclude
process deadlocking. Likewise, lock types must be freed up, given up, or unlocked
in the reverse order of their acquisition.

4.1.3.1. Global Serialization: PRTPKG

There exist prtpkg updates that can touch just about everything prtpkg, so even
though such modifications should be infrequent, non-updating users of those
resources need assurance the universe will not shift underneath them. This is the
raison d'être of the PRTPKG lock. Experience may reveal the need to add more
granularity at this high impact locking level. On the other hand, if only one lock
can be implemented, this is the one. The resources encompassed by the PRTPKG
lock are all resources in the commonwealth not covered by the other lock types—it
is the catch-all lock of prtpkg serialization.

Since all other prtpkg processing depends on the stability of these foundational
resources, all processes must hold at least a shared PRTPKG lock while processing.
If such processes are complex or long-running, they should monitor the PRTPKG lock
queue and unlock/reacquire their shared PRTPKG lock at the first opportunity to

Page 29 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

yield to any waiting update bidder as needed. The more cells that are sharing the
PRTPKG lock, the more important such cooperation becomes.

When a PRTPKG update lock request is made, every other prtpkg process in the
commonwealth receives a USR1 signal it interprets as a quiesce directive. Each
process must in response gracefully abort what it is doing if it cannot quickly
complete what it is doing or must complete what it is doing. Then the process
must unlock its shared PRTPKG grant and immediately either terminate or issue a
new shared PRTPKG lock request. Examples of PRTPKG updates include a scheduled
outage of the network file system for maintenance; manipulating the makeup of
the commonwealth such as the sets of defined cells (all HOST[ROOTFS] entities),
groups, or releases (the set of releases in the /usr/prtpkg trunk). Also, changing
the release of any cell must be performed while holding the PRTPKG update lock
(floating the lock across any actual reboots involved).

4.1.3.2. Driver Config Serialization: PORTDB

The portdb scripts can update /etc/ports contents of multiple senior cells and
only knows what will need to be done for each collection while processing each
collection. Consequently the PORTDB lock is designed to serialize the group of
resources portdb maintenance can affect; i.e., the contents of all senior cells’
/etc/ports trees. Such update serialization also ensures only one portdb
command can be processing at a time within a commonwealth (but why should
there be a need to run different portdb commands at the same time, anyway?).
Note this lock does not serialize the senior cells, only their /etc/ports trees, but
shared PORTDB locks acquired by portsu processes sufficiently protect them. Also,
prtpkg processes do not access /etc/ports trees, so they can ignore PORTDB
locking; however, prtpkgbatch scripts; i.e., .prtpkg files, can, and care must be
taken in creating such to ensure prtpkg locking is properly utilized.

4.1.3.3. Collection Serialization: PORTSU{*|collection}

PORTSU locks protect collection trees from or during (1) ports -u processing of
prime and usrport /usr/ports trees, (2) non-ports -u reconfiguration of symport
/usr/ports trees, and (3) package building. The lock is requested by a specific cell,
but if that cell is entangled with any other cells, the lock request is converted from
a cell request into a mix request (see Section 3.4.2 for details).

Note: in the rest of this section, understand the use of mix to mean mix or cell
inclusively.

Page 30 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

Two scopes of collection serialization at the same level protect collection trees and
they are mutually exclusive for any given process:

4.1.3.3.1. All collections: PORTSU_*
This scope protects every collection in the mix of the lock request to be
serialized. It is treated as and behaves as a set of PORTSU locks for every
collection in the mix—all processed at the same time during a lock operation.

4.1.3.3.2. One collection: PORTSU_collectionname
This scope locks a single collection in the mix of the lock request.

What is serialized specifically is the content of the requesting cell’s /usr/ports
directory or, if entangled, the entangled prime or usrport cell’s /usr/ports
directory) for sharing or updates. The granularity of PORTSU locks is for the mix of
the requesting cells. The lock queues are placed in the shared cell trunks of the
commonwealth; i.e., every cell has a PORTSU lock queue as a
/usr/prtpkg/cells/cell/PORTSU trunk or anchor. Entangled cells will anchor a
lock queue at /usr/prtpkg/mixes/mix/PORTSU that is shared by all the entangled
cells (instead of a private cell lock queue).

Requests for PORTSU update locks require a shared PORTDB lock be already granted
to the requesting process. Similarly, processes requesting a MAKE update lock are
required to already be granted the appropriate shared PORTSU lock.

4.1.3.4. Port Serialization: MAKE_portname

The integrity and cohesion of port directories is maintained through a MAKE lock
and only one may be requested or held by a single process and its children at a
time. Changing the collection of a symport’s package requires a MAKE update lock
for the port, as does changing the content of a usrport or symport package
directory.

The granularity of MAKE locks is for whatever mix or unmixed cell the requesting
process runs within. The MAKE lock queues are placed in the shared mix or
unmixed cell trunks of the commonwealth; i.e., in every cell, a
/usr/prtpkg/cells/cell/MAKE trunk or anchor provides its MAKE lock queue.

4.1.3.5. Build Serialization: WORK_portname_version_buildname

These locks protect the package building work directory for active build and post-
build work archive processes.

Page 31 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

4.1.3.6. Deploy Serialization: PKG_portname_version_buildname

These locks protect the package file for active build and deploy processes. Note
that pkgadd and pkgrm maintain their own serialization of the /var/lib/pkg/db
file and therefore the cell being modified by their processing.

4.2. Inter-process Communication

Processes communicate with each other both synchronously and asynchronously in
a commonwealth via shoulder-tapping provided by:

4.2.1. Signal Processing

Prtpkg processes can raise a signal(7) for another process in the same cell to
handle. This is accomplished via a kill command, system call, or some library
call. Prtpkg will not depend upon cross-cell signal support within prtpkg
platforms (see Section 4.2.2.1.2 for how prtpkg meets this need).

4.2.2. Shared Files

The creation, modification, or removal of an inode in common namespace by one
process for notice and/or processing by another process is a methodology for inter-
process communication as old as UNIX (actually, older).

4.2.2.1. Broadcast, Request, and Notices Queues

In the interest of KISS, these queue polling facilities are used to eliminate a
prtpkg requirement for ssh with its passwords and/or PKI infrastructure (the
networked inode permissions of the broadcast, request, and notices queue paths
are sufficiently secure for prtpkg’s purposes).

4.2.2.1.1. Commonwealth Broadcast Queue

This shared file needs to be polled by every cell’s commonwealth coordination
dæmon to act upon inter-cell notices and requests to groups of cells, possibly to all
cells in the commonwealth. Each commonwealth coordination dæmon appends
requests germane to its cell to the cell’s request queue for handling by the cell’s
request handling dæmon and appends germane notices to its notices file.

Page 32 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

4.2.2.1.2. Cell Request Queues

Polling of a cell’s request queue by the cell’s request handling dæmon enables cells
to respond to processing tasks assigned by other cells within the commonwealth.
This mechanism provides the means to indirectly signal processes in other prtpkg
platforms as well as other cells within the same prtpkg platform.

4.2.2.1.3. Cell Notices Queues

This shared file acts as a broadcast file at the cell level, receiving appended lines
representing notices of significance only within that cell. It is expected that all
processes in the cell poll this file as needed. It is not intended to serve as a logging
facility.

5. Package Components

The prtpkg package consists of dash and gawk scripts. Its state is late alpha. See
the TODO item in the prtpkg h output for more details. This document
(LibreOffice 5.2 Writer source) and the graphic (LibreOffice 5.2 Draw source) it
embeds are licensed under the standard Creative Commons Attribution ‒
ShareAlike 4.0 International License as will all documentation for prtpkg in the
future, while code will be licensed under the standard GNU Public License Version
2 or higher (see http://dlcusa.net/DLC_License.txt for details).

6. Command Information: Help, Prolog, Sample Outputs

The sample reports are edited with cherry-picked lines and column widths have
been shortened to get them to fit better in the pages. They are presented to give
you a flavor of what prtpkg has to offer. Some of the details of existing outputs
have been edited for what they should soon look like, mostly the directory/file
reorganization, and some of the latest enhancements are not showing in these
samples. The point: the prtpkg package is not vaporware, but is work in progress.
Really, everything at the moment should be marked [in transition to data reorg].

6.1. Output: prtpkg h [contains TODO items]
prtpkg is the heart of a unified CRUX package maintenance and organization
toolset that logs maintenance activity in a prtpkg.txt file (a browsable log
that uses tabs as field separators). That data, along with /var/lib/pkg/db,
can be processed by the prtpkginfo command to produce txt and log files of
installed ports sorted by package and by collection (log files are formatted
txt records without tabs and producing column alignment of the data). Another
major feature of the toolset is its support for easily identifying how package
files were built, e.g., CFLAGS and all other environment variables at build
time, build uname -a and other system (and hypervisor) info, package roster,

Page 33 of 48

http://dlcusa.net/DLC_License.txt
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://dlcusa.net/CRUX_Software_Building.odg
http://dlcusa.net/CRUX_Software_Building.odg
http://dlcusa.net/CRUX-prtpkg_Overview.odt
http://dlcusa.net/CRUX-prtpkg_Overview.odt

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

tool configurations, port tree snapshots; i.e., all package metadata that can
be really useful in diagnosing strange package builds and behaviors. Also,
the prtpkgbatch command (a driver for all commands, not just prtpkg commands,
needed to perform any given package maintenance task as defined in an input
.prtpkg file) by default archives compressed build work directory trees using
backgrounded nohup subprocesses that execute while subsequent prtpkg
subcommands in the batch are processed.

Of necessity, only the subset of canonical CRUX tools that build ports one
package per command or install or remove packages one package per command are
supported, but with some prohibitions (listed below), the rest can be invoked
outside of the prtpkg command to provide machine-readable information that can
be easily converted into .prtpkg files.

NOTE: Rather than require changes in the core system maintenance packages, it
 is thought better to hide the normal ports, prt-get, prt-cache, pkgadd,
 pkgrm, and pkgmk binaries on a prtpkg-maintained system and install in
 their places front-ending executables that filter out with appropriate
 explanation the verboten uses listed below before transferring control to
 the original binaries via execve(2) or the shell built-in exec command as
 appropriate.

 NEVER allow these command types to run in a prtpkg-maintained system
 UNDER ANY CIRCUMSTANCES:
 prt-get without --cache (always use prt-cache except for prt-get cache)
 prt-cache depinst without --test
 prt-cache grpinst without --test
 prt-cache sysup without --test
 NEVER allow these command types to run in a prtpkg-maintained system
 UNLESS they have been forked within a prtpkg process tree:
 pkgadd
 pkgmk
 pkgrm
 prt-cache install without --test
 prt-cache remove without --test
 prt-cache update without --test
 ports -u
 Otherwise, you will have to manually update the prtpkg data files, a
 likely tedious, error-prone, and potentially impossible undertaking.

This version (of the new version) supports the pkg{mk,add,rm}, override, and
test extensions.

TODO: * Finish removing dlcisms and cleaning up the code and doc for the first
 initial release (port or maybe a git repo).
 * Implement TODO prtpkg subcommand TYPEs (see SYNTAX for details),
 including implementing build.conf and deploy.conf file handling.
 * Still a lot of development work to be done on implementing overrides.
 * The front-ending ports, prt-get, prt-cache, pkgmk, pkgadd, and pkgrm
 modules (or scripts) need to be developed and incorporated.
 * Implement prtpkg.conf file of base override definition sets and any
 other tweaks associated with particular porter and builder systems,
 special circumstance, etc.--perhaps supporting environment redefinition
 as part of prtpkg initialization.
 * Add the kernel .config file to the build environment snapshot.
 * Create a script to massage prt-cache sysup|depinst|grpinst –-test
 output into a new .prtpkg file.

For more help, run prtpkg h all|syntax|global|prt|pkg

6.2. Output: prtpkg h syntax [contains TODO items]
SYNTAX: prtpkg TYPE PACKAGE BATCH TRY [OVERRIDES]
 where:
 TYPE of operation is <|>|B|D|E|I|M|P|R|S|U|a|b|c|d|e|f|h|r|s:
 Note: -h and --help are the same as a naked h.
 TYPE long-name----- commands-invoked-or-other-description-------------
 < pre-install [n/a--run the ports's pre-install script] TODO
 > post-install [n/a--run the ports's post-install script] TODO
 B rebuild pkgmk -f with -i or -u -- invokes pkgadd
 D demote [n/a—-move files: SSD>HDD>USB>offsite>null] TODO
 E establish [n/a—-add a CRUX release] TODO
 I install prt-cache install -- invokes pkg{mk,add}
 M migrate [n/a—-upgrade a CRUX release] TODO
 P promote [n/a—-move files: SSD<HDD<USB<offsite] TODO

Page 34 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

 R remove prt-cache remove -- invokes pkgrm
 S make_signature signify CRUX-3.3-TODO
 U update prt-cache update -- invokes pkg{mk,add}
 a add_package pkgadd TODO
 b build_package pkgmk without -i -f -u -d -uf -um (just make) TODO
 c clean_package pkgmk -c TODO
 d download pkgmk -do TODO
 e extract pkgmk -eo TODO
 f make_footprint pkgmk -uf TODO
 h help [specify one or none: all|syntax|global|pkg|prt]
 r remove_package pkgrm
 s make_md5sum pkgmk -um TODO
 PACKAGE is the name of the CRUX package to be processed. Note: prtpkg
 does not permit multiple packages to be specified for any type of
 operation--each package must have its own prtpkg subcommand invocation.
 BATCH defines a chronological ordinal number starting with zero with
 leading zeros identifying the package maintenance task this prt-get
 invocation is supporting (see prtpkgbatch for further information).
 The new version of prtpkg uses a 5-digit number with a leading
 underscore (indicating it's a new version number), while the old
 version (which had no prtpkgbatch tool) accepts a naked 3-digit number
 (the underscore will be deprecated when support for the old version,
 never released into the wild, is dropped, hopefully before the first
 release).
 TRY is a 2-digit chronological ordinal number starting with zero for the
 attempt being made to complete the maintenance task identified by the
 BATCH argument, with a leading zero as needed. The old version allowed
 alphanumeric values; e.g., t1, t23.
 OVERRIDES is a string of semi-colon-separated parameters in the
 form [!]OVERRIDE, where the optional ! causes disabling instead
 enabling, and OVERRIDE is one of the following as is pertinent
 to the TYPE of operation requested (most are currently TODO):
 [global]: _if _im _r= _uf _um redo test
 pkgadd: acd= acf= af ar= au
 pkgmk: mc mcd= mcf= mcm md mdo meo mf mi
 mif mim min mkw mns mu mud muf mum
 pkgrm: rr=
 prt-cache: paa= pca= pcd= pcf= pcp= pcs= pf pfr pi
 pif pig= pim pins pkw pma= pns pnsd ppos
 ppre pr= pra= pt= puf pum
 The test override can be used to show how overrides will affect
 generated prt-cache, pkgmk, pkgadd, and pkgrm commands to support
 developing the desired prtpkg command before committing to its
 execution.

6.3. Output: prtpkg h global [contains TOTO items]
GLOBAL OVERRIDES sorted alphabetically within groups:
 _if : use this specification to set mif and pif [TODO]
 _im : use this specification to set mim and pim [TODO]
 _r= : use this specification to set ar= and rr= [TODO]
 _uf : use this specification to set muf and puf [TODO]
 _um : use this specification to set mum and pum [TODO]
 redo: force execution of this prtpkg command even if was successfully
 invoked earlier in any attempt to process this batch
 test: report what base default flags would be generated and what runnable
 prt-cache, pkgmk, pkgadd, or pkgrm command would be produced by
 any overrides in this prtpkg command, but do not execute that
 command or any others that support it (e.g., mkdir), only report
 the commands (or groups of commands) that would be run if test was
 not invoked. While not intended for use in a batch file, this
 override can be applied globally to all batch commands in a
 prtpkgbatch input file via the prtpkgbatch command line test
 argument. Note: This override is completely unrelated to the
 prt-cache --test flag which requires prt-cache be run to perform
 the test.

6.4. Output: prtpkg h prt [entirely TODO items]
PRT-CACHE OVERRIDES (TYPEs I, U, R) sorted alphabetically within groups: -----------------
Note: prtpkg only permits flags in the aargs, margs, and rargs
 strings that have no equivalent prt-cache flags in order
 to simplify prtpkg's flag processing.
 paa=: Supply "--aargs=" string for any pkgadd invocation (--aargs="flg[flg]...")
 pkgadd flags not also supported as prt-cache flags:

Page 35 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

 Specify alternative installation root (-r, --root <path>)
 Upgrade package with the same name (-u, --upgrade)
 Note: prt-cache update specifies --aargs=-u
 automatically, and that cannot be disabled
 (consider running pkgmk without -f or -i
 instead of prt-cache)
 Unsupported pkgadd options (not permitted in prtpkg): unsupported:
 Print help and exit (-h, --help)
 Print version and exit (-v, --version)
 pca=: Append string to this run's prt-cache configuration (--config-append=string)
 pcd=: /usr/prtpkg subdirectory housing prt-get.conf (uses --config=)
 pcf=: Supply alternative configuration file to prt-cache (--config=filespec)
 pcp=: Prepend string to this run's prt-cache configuration (--config-prepend=string)
 pcs=: Override string in this run's prt-cache configuration (--config-append=string)
 pf : Force install by pkgadd (-f, -i, --aargs=-f)
 pfr : Force rebuild by pkgmk (-fr, --margs=-f)
 pi : Force install by pkgadd (-f, -i, --aargs=-f)
 pif : Ignore footprint by pkgmk (-if, --margs=-if)
 pig=: Prevent installation of listed dependencies (--ignore=pkg[,pkg]...)
 pim : Ignore md5sum by pkgmk (-im, --margs=-im)
 pins: Enable|disable the ppre and ppos overrides (--pre-install,
 --post-install,
 --install-scripts)
 pkw : Prevent removal of the work directory by pkgmk (-kw, --margs=-kw)
 pma=: Supply "--margs=" string for any pkgmk invocation (--margs="flg[flg]...")
 pkgmk flags not also supported as prt-cache flags:
 Remove package and downloaded files (-c, --clean)
 Do not build, only check md5sum (-cm, --check-md5sum)
 Download any missing distfiles before building (-d, --download)
 Note: prt-cache sets --margs=-d automatically,
 and that cannot be disabled (consider -do)
 Only download missing distfiles (-do, --download-only)
 Only extract distfiles into work directory (-eo, --extract-only)
 Ignore new files in a footprint mismatch (-in, --ignore-new)
 Only check for up-to-date (-utd, --up-to-date)
 Unsupported pkgmk options (not permitted in prtpkg): unsupported:
 Search for and build packages recursively (-r, --recursive)
 Print help and exit (-h, --help)
 Print version and exit (-v, --version)
 pns : Prevent invocation of the strip command by pkgmk (-ns, --margs=-ns)
 pnsd: Don't parse the default configuration file (--no-std-config)
 ppos: Invoke post-install script after pkgadd in prt-cache (--post-install,
 --install-scripts)
 ppre: Invoke pre-install script before pkgmk in prt-cache (--pre-install,
 --install-scripts)
 pr= : Supply alternative installation root directory (--install-root=dirspec)
 pra=: Supply "--rargs=" string for any pkgrm invocation (--rargs="flg[flg]...")
 pkgmk flags not also supported as prt-cache flags:
 Specify alternative installation root directory (-r, --root <path>)
 Unsupported pkgrm options (not permitted in prtpkg): unsupported:
 Print help and exit (-h, --help)
 Print version and exit (-v, --version)
 puf : Update footprint by pkgmk (-uf, --margs=-uf)
 pum : Update md5sum by pkgmk (-um, --margs=-um)

Unsupported prt-cache options (not permitted in prtpkg): ---------------------------------
 Modifies scope of diff, quickdiff, and dependent (--all)
 Use cache file for this run (always used by prtpkg) (--cache)
 Modifies output of listinst (--depsort)
 Write build output to log (always used by prtpkg) (--log)
 Show path info for search, dsearch, list, and depends (--path)
 Modifies output of sysup (--nodeps)
 Modifies scope for diff, quickdiff, and sysup (--prefer-higher, -ph)
 Modifies output of dependent (--recursive)
 Use filter, search patterns as regular expression (--regex)
 Override the 'prefer-higher' option (--strict-diff, -sd)
 Dry run, don't actually install anything (--test)
 Modifies output of dependent (--tree)
 Verbose and more verbose for search and list (-v, -vv)

Unsupported prt-cache commands (not permitted in prtpkg): --------------------------------
NOTE: depinst, grpinst, and sysup must NEVER be run in a
 prtpkg-maintained system UNLESS defanged using the
 --test option. Also, install, remove, and update must
 NEVER be run outside of prtpkg on a prtpkg-maintained

Page 36 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

 system.
 cache cat current dependent depends depinst deptree
 diff dsearch dumpconfig dup edit fsearch grpinst
 help info isinst list listinst listlocked listorphans
 lock ls printf quickdep quickdiff readme search
 sysup unlock version

6.5. Output: prtpkg h pkg [entirely TODO items]
PKGMK OVERRIDES (TYPEs B, I, U, m) sorted alphabetically within groups: ------------------
 mc : Remove package and downloaded files (-c, --clean)
 mcd=: /usr/prtpkg subdirectory housing pkgmk.conf (uses --config-file)
 mcf=: Use alternative configuration file (-cf, --config-file <file>)
 mcm : Do not build, only check md5sum (-cm, --check-md5sum)
 md : Download any missing distfiles before building (-d, --download)
 mdo : Only download missing distfiles (-do, --download-only)
 meo : Only extract distfiles into work directory (-eo, --extract-only)
 mf : Build package even if it appears to be up to date (-f, --force)
 mi : Build and install package (-i, --install)
 mif : Build package without checking footprint (-if, --ignore-footprint)
 mim : Build package without checking md5sum (-im, --ignore-md5sum)
 min : Ignore new files in a footprint mismatch (-in, --ignore-new)
 mkw : Keep temporary working directory (-kw, --keep-work)
 mns : Do not strip executable binaries or libraries (-ns, --no-strip)
 mu : Build and install package (as upgrade) (-u, --upgrade)
 mud : Only check for up-to-date (-utd, --up-to-date)
 muf : Only update previously built package file's footprint (-uf, --update-footprint)
 mum : Only update .md5sum file in the port directory (-um, --update-md5sum)
Unsupported pkgmk options (not permitted in prtpkg): unsupported:
Note: NEVER allow pkgmk to run outside of prtpkg in a
 prtpkg-maintained system!
 Print help and exit (-h, --help)
 Search for and build packages recursively (-r, --recursive)
 Print version and exit (-v, --version)

PKGADD OVERRIDES (TYPEs B, I, U, a) sorted alphabetically within groups: -----------------
 acd=: /usr/prtpkg subdirectory housing pkgadd.conf (unsupported by pkgadd)
 acf=: the symlink value to use for /etc/pkgadd.conf (unsupported by pkgadd)
 af : force install, overwrite conflicting files (-f, --force)
 ar= : specify alternative installation root (-r, --root <path>)
 au : upgrade package with the same name (-u, --upgrade)
Unsupported pkgadd options (not permitted in prtpkg): unsupported:
Note: NEVER allow pkgadd to run outside of prtpkg in a
 prtpkg-maintained system!
 print help and exit (-h, --help)
 print version and exit (-v, --version)

PKGRM OVERRIDES (TYPEs B, I, U, R, r) sorted alphabetically within groups: ---------------
 rr= : specify alternative installation root (-r, --root <path>)
Unsupported pkgrm options (not permitted in prtpkg): unsupported:
Note: NEVER allow pkgrm to run outside of prtpkg in a
 prtpkg-maintained system!
 print help and exit (-h, --help)
 print version and exit (-v, --version)

6.6. Prolog: prtpkgbatch [contains TODO items]
Process a prtpkg batch as specified by:
Required Arguments:
 $1: the batch_ID of the prtpkg file to process
 $2: the build_ID of the build configuration to run in [TODO]
Optional arguments that can be specified to be passed
as overrides into all prtpkg commands invoked by the
batch run.
 'redo' [TODO]
 'test'
Environment Variables:
 PRTPKG_SYS the prtpkg platform this command is [TODO]
 running on [TODO]
 PRTPKG_PORTS the ports_ID of the release of port [TODO]
 collections to be used for building [TODO]

Page 37 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

6.7. Prolog: prtpkglog [in transition to data reorg]
prtpkglog -- output /usr/prtpkg/$PRTPKG_PORTSU/prtpkg.txt in log format (no tabs,
fields columnized using blanks) piped into the command defined in the arguments
or by default into "less -S" (truncate each line at the screen's right boundary).

6.8. Output: prtpkglog [in transition to data reorg]
00000000-00:00:00UT -rc t package----- version--- coll build- batch try-
working_directory----------- command------------------ ---------------------------------------
20170130-14:15:34UT 0 U xorg-libxi 1.7.9-1 xorg pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f xorg-libxi
20170130-14:22:33UT 0 U mesa3d 12.0.6-1 xorg pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f mesa3d
20170130-14:22:51UT 0 U libva 1.7.3-1 opt pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f libva
20170130-14:23:10UT 0 U freeglut 3.0.0-1 opt pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f freeglut
20170130-14:27:20UT 0 U fontforge 20161012-1 opt pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f fontforge
20170130-15:07:58UT 0 U firefox 51.0-1 opt pkgsb3 00031 06
/var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f firefox

6.9. Output: cat /usr/prtpkg/cells/dlcz[ZD]/CRUX-3.2/pkgsb3/log/00031/06.log
==== prtpkgbatch is running batch 00031 try 06 in root [ZD] of host dlcz at Mon Jan 30 13:32:31 UTC 2017
-rw-r--r-- 1 root root 1.9K Jan 30 13:31 /usr/prtpkg/systems/dlcz[ZD]/CRUX-3.2/00031.prtpkg
sysup 2017-01-29
do_prtpkg U openssl
do_prtpkg U libpcre
do_prtpkg U flex
do_prtpkg U libspiro
do_prtpkg U kbd
do_prtpkg U libyaml
do_prtpkg U orc
do_prtpkg U curl
do_prtpkg U elfutils
do_prtpkg U speex
do_prtpkg U sed
do_prtpkg U openldap
do_prtpkg U nss
do_prtpkg U nfs-utils
do_prtpkg U btrfs-progs
do_prtpkg U krb5
do_prtpkg U glib
#
The first try to U python3-setuptools failed for the situation described
in the port's new README, so attempt the solution it documents...
#
do_prtpkg I python3-pip
#
The second try failed looking for module six -- since package six is
installed, try installing python3-six (all dependencies already installed)...
#
do_prtpkg I python3-six
#
The 3rd try complains about module packaging not found--try installing all
6c37 python3-* ports with their uninstalled deps...
#
do_prtpkg I log4cplus
do_prtpkg I leptonica
do_prtpkg I libwebp
#
Alan's tesseract fails checksum, so select 6c37's by adding it to the 1st
6c37 prtdir... Only multiple ports per prtdir is breaking prtlist somehow.
Worry about that latter, instead create a _symlinks collection that holds
symlinks to all the ports previously in "prtdir collection:port[, port]..."
statements, which made prtlist happy...
#
Only 6c37's tesseract won't build, either--meanwhile, there is a new
pre-install script for python3-setuptools that needs to be run for it to
install properly, so modified prtpkg to default to --install-scripts for
updates, and get rid of the other unnecessary 6c37 ports deps...
#
do_prtpkg R libwebp
do_prtpkg R leptonica
do_prtpkg R log4cplus
do_prtpkg U python3-setuptools
do_prtpkg U llvm
do_prtpkg U taglib
do_prtpkg U gobject-introspection
do_prtpkg U mako
do_prtpkg U libvirt
do_prtpkg U xorg-libxi
do_prtpkg U mesa3d
do_prtpkg U libva
do_prtpkg U freeglut
do_prtpkg U fontforge
do_prtpkg U firefox
==== prtpkgbatch is now running the above commands:
Mon Jan 30 13:32:31 UTC 2017 -- whatprt libwebp => /usr/ports/contrib 0.5.1-1

Page 38 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

Mon Jan 30 13:32:31 UTC 2017 -- whatpkg libwebp => contrib 0.5.1-1 pkgsb3 00031 04
Mon Jan 30 13:32:31 UTC 2017 -- Invoking /com/bin/prtpkg R libwebp _00031 06
Mon Jan 30 13:32:32 UTC 2017 -- Invocation succeeded
==== prtpkgbatch command <do_prtpkg R libwebp> returned 0
Mon Jan 30 13:32:32 UTC 2017 -- whatprt leptonica => /usr/ports/6c37 1.74.1-1
Mon Jan 30 13:32:32 UTC 2017 -- whatpkg leptonica => 6c37 1.74.1-1 pkgsb3 00031 04
Mon Jan 30 13:32:32 UTC 2017 -- Invoking /com/bin/prtpkg R leptonica _00031 06
Mon Jan 30 13:32:33 UTC 2017 -- Invocation succeeded
==== prtpkgbatch command <do_prtpkg R leptonica> returned 0
Mon Jan 30 13:32:33 UTC 2017 -- whatprt log4cplus => /usr/ports/6c37 1.2.0-1
Mon Jan 30 13:32:33 UTC 2017 -- whatpkg log4cplus => 6c37 1.2.0-1 pkgsb3 00031 04
Mon Jan 30 13:32:33 UTC 2017 -- Invoking /com/bin/prtpkg R log4cplus _00031 06
Mon Jan 30 13:32:34 UTC 2017 -- Invocation succeeded
==== prtpkgbatch command <do_prtpkg R log4cplus> returned 0
==== prtpkgbatch archived port _symlinks/python3-setuptools
==== in /usr/prtpkg/systems/dlcz[ZD]/CRUX-3.2/log/_/00031/06/python3-setuptools.port.tar.bz2

[...]
==== prtpkgbatch while read EOF encountered
==== prtpkgbatch finished running the above commands with status 0
==== Running prtpkginfo -sup -dbg -lpf -lcf -bld -bat -try -dat -typ
The pkg/db and/or prtpkg.log files are more recent than any
prtpkg_by_pkg.*.txt file in the working directory. Thus,
the -upd option is in effect even if it was not specified
Generating /var/lib/pkg/prtpkg_by_pkg.20170130-150758.txt...
Generating /var/lib/pkg/prtpkg_by_col.20170130-150758.txt...
Generating /var/lib/pkg/prtpkg_by_pkg.20170130-150758.log from /var/lib/pkg/prtpkg_by_pkg.20170130-150758.txt...
Generating /var/lib/pkg/prtpkg_by_col.20170130-150758.log from /var/lib/pkg/prtpkg_by_col.20170130-150758.txt...
*** prtpkg_by_pkg.20170130-055017.txt 2017-01-30 05:50:17.471873661 +0000
--- prtpkg_by_pkg.20170130-150758.txt 2017-01-30 15:07:58.752057202 +0000

*** 86 ****
! firefox 50.1.0-1 [same] opt pkgsb3 00025 18 20170113-
17:59:55UT B /usr/ports/opt/firefox pkgmk -d -f -u -if -kw -ns
--- 86 ----
! firefox 51.0-1 [same] opt pkgsb3 00031 06 20170130-
15:07:58UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f firefox

*** 92 ****
! fontforge 20150824-1 [same] opt pkgsb3 00025 17 20170113-
17:12:51UT B /usr/ports/opt/fontforge pkgmk -d -f -u -if -kw -ns
--- 92 ----
! fontforge 20161012-1 [same] opt pkgsb3 00031 06 20170130-
14:27:20UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f fontforge

*** 94 ****
! freeglut 2.8.1-1 [same] opt pkgsb3 00025 13 20170113-
16:36:47UT B /usr/ports/opt/freeglut pkgmk -d -f -u -if -kw -ns
--- 94 ----
! freeglut 3.0.0-1 [same] opt pkgsb3 00031 06 20170130-
14:23:10UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f freeglut

*** 127 ****
! gobject-introspection 1.48.0-1 [same] opt pkgsb3 00025 11

20170113-11:29:45UT B /usr/ports/opt/gobject-introspection pkgmk -d -f -u -if
-kw -ns
--- 127 ----
! gobject-introspection 1.50.0-1 [same] opt pkgsb3 00031 06

20170130-14:12:47UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns
--install-scripts -f gobject-introspection

*** 187 ****
! leptonica 1.74.1-1 [same] 6c37 pkgsb3 00031 04 20170130-
05:09:46UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f leptonica
--- 187 ----
! leptonica [not installed] 1.74.1-1 6c37 pkgsb3 00031 04 20170130-
05:09:46UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f leptonica

*** 268 ****
! libva 1.7.2-1 [same] opt pkgsb3 00025 12 20170113-
12:21:29UT B /usr/ports/opt/libva pkgmk -d -f -u -if -kw -ns
--- 268 ----
! libva 1.7.3-1 [same] opt pkgsb3 00031 06 20170130-
14:22:51UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f libva

*** 271 ****
! libvirt 2.5.0-2 [same] nullspoon pkgsb3 00025 11 20170113-
11:29:10UT B /usr/ports/nullspoon/libvirt pkgmk -d -f -u -if -kw -ns
--- 271 ----
! libvirt 3.0.0-1 [same] nullspoon pkgsb3 00031 06 20170130-
14:15:18UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f libvirt

*** 277 ****
! libwebp 0.5.1-1 [same] contrib pkgsb3 00031 04 20170130-
05:10:09UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f libwebp
--- 277 ----
! libwebp [not installed] 0.5.1-1 contrib pkgsb3 00031 04 20170130-
05:10:09UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f libwebp

*** 291,292 ****
! llvm 3.9.0-2 [same] opt pkgsb3 00025 07 20170113-
07:48:21UT B /usr/ports/opt/llvm pkgmk -d -f -u -if -kw -ns
! log4cplus 1.2.0-1 [same] 6c37 pkgsb3 00031 04 20170130-
05:08:48UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f log4cplus
--- 291,292 ----
! llvm 3.9.1-3 [same] opt pkgsb3 00031 06 20170130-
14:11:42UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f llvm

Page 39 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

! log4cplus [not installed] 1.2.0-1 6c37 pkgsb3 00031 04 20170130-
05:08:48UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f log4cplus

*** 303 ****
! mako 1.0.1-1 [same] opt pkgsb3 00025 11 20170113-
11:33:45UT B /usr/ports/opt/mako pkgmk -d -f -u -if -kw -ns
--- 303 ----
! mako 1.0.4-1 [same] opt pkgsb3 00031 06 20170130-
14:12:53UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f mako

*** 307 ****
! mesa3d 12.0.5-1 [same] xorg pkgsb3 00025 12 20170113-
12:15:30UT B /usr/ports/xorg/mesa3d pkgmk -d -f -u -if -kw -ns
--- 307 ----
! mesa3d 12.0.6-1 [same] xorg pkgsb3 00031 06 20170130-
14:22:33UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f mesa3d

*** 391 ****
! python3-setuptools 32.3.1-1 [same] 6c37 pkgsb3 00025 10

20170113-11:11:40UT I /var/log/pkgbuild/_/00025/10 prt-cache install --margs="-if"
-kw -ns --install-scripts --aargs="-f" python3-setuptools
--- 391 ----
! python3-setuptools 34.1.0-1 [same] _symlinks pkgsb3 00031 06

20170130-13:32:44UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns
--install-scripts -f python3-setuptools

*** 452 ****
! taglib 1.11-1 [same] opt pkgsb3 00025 07 20170113-
06:56:31UT B /usr/ports/opt/taglib pkgmk -d -f -u -if -kw -ns
--- 452 ----
! taglib 1.11.1-1 [same] opt pkgsb3 00031 06 20170130-
14:12:04UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f taglib

*** 591 ****
! xorg-libxi 1.7.8-1 [same] xorg pkgsb3 00025 12 20170113-
12:00:43UT B /usr/ports/xorg/xorg-libxi pkgmk -d -f -u -if -kw -ns
--- 591 ----
! xorg-libxi 1.7.9-1 [same] xorg pkgsb3 00031 06 20170130-
14:15:34UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f xorg-libxi
*** prtpkg_by_col.20170130-055017.txt 2017-01-30 05:50:17.474873675 +0000
--- prtpkg_by_col.20170130-150758.txt 2017-01-30 15:07:58.755057215 +0000

*** 23,24 ****
! leptonica 1.74.1-1 [same] 6c37 pkgsb3 00031 04 20170130-
05:09:46UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f leptonica
! log4cplus 1.2.0-1 [same] 6c37 pkgsb3 00031 04 20170130-
05:08:48UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f log4cplus
--- 23,24 ----
! leptonica [not installed] 1.74.1-1 6c37 pkgsb3 00031 04 20170130-
05:09:46UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f leptonica
! log4cplus [not installed] 1.2.0-1 6c37 pkgsb3 00031 04 20170130-
05:08:48UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f log4cplus

*** 27 ****
- python3-setuptools 32.3.1-1 [same] 6c37 pkgsb3 00025 10

20170113-11:11:40UT I /var/log/pkgbuild/_/00025/10 prt-cache install --margs="-if"
-kw -ns --install-scripts --aargs="-f" python3-setuptools
--- 26 ----

*** 29 ****
--- 29 ----
+ python3-setuptools 34.1.0-1 [same] _symlinks pkgsb3 00031 06

20170130-13:32:44UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns
--install-scripts -f python3-setuptools

*** 86 ****
! libwebp 0.5.1-1 [same] contrib pkgsb3 00031 04 20170130-
05:10:09UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f libwebp
--- 86 ----
! libwebp [not installed] 0.5.1-1 contrib pkgsb3 00031 04 20170130-
05:10:09UT I /var/log/pkgbuild/_/00031/04 prt-cache install -if -kw -ns --install-scripts -f libwebp

*** 258 ****
! libvirt 2.5.0-2 [same] nullspoon pkgsb3 00025 11 20170113-
11:29:10UT B /usr/ports/nullspoon/libvirt pkgmk -d -f -u -if -kw -ns
--- 258 ----
! libvirt 3.0.0-1 [same] nullspoon pkgsb3 00031 06 20170130-
14:15:18UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f libvirt

*** 299 ****
! firefox 50.1.0-1 [same] opt pkgsb3 00025 18 20170113-
17:59:55UT B /usr/ports/opt/firefox pkgmk -d -f -u -if -kw -ns
--- 299 ----
! firefox 51.0-1 [same] opt pkgsb3 00031 06 20170130-
15:07:58UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f firefox

*** 302,303 ****
! fontforge 20150824-1 [same] opt pkgsb3 00025 17 20170113-
17:12:51UT B /usr/ports/opt/fontforge pkgmk -d -f -u -if -kw -ns
! freeglut 2.8.1-1 [same] opt pkgsb3 00025 13 20170113-
16:36:47UT B /usr/ports/opt/freeglut pkgmk -d -f -u -if -kw -ns
--- 302,303 ----
! fontforge 20161012-1 [same] opt pkgsb3 00031 06 20170130-
14:27:20UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f fontforge
! freeglut 3.0.0-1 [same] opt pkgsb3 00031 06 20170130-
14:23:10UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f freeglut

*** 318 ****

Page 40 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

! gobject-introspection 1.48.0-1 [same] opt pkgsb3 00025 11
20170113-11:29:45UT B /usr/ports/opt/gobject-introspection pkgmk -d -f -u -if

-kw -ns
--- 318 ----
! gobject-introspection 1.50.0-1 [same] opt pkgsb3 00031 06

20170130-14:12:47UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns
--install-scripts -f gobject-introspection

*** 379 ****
! libva 1.7.2-1 [same] opt pkgsb3 00025 12 20170113-
12:21:29UT B /usr/ports/opt/libva pkgmk -d -f -u -if -kw -ns
--- 379 ----
! libva 1.7.3-1 [same] opt pkgsb3 00031 06 20170130-
14:22:51UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f libva

*** 389 ****
! llvm 3.9.0-2 [same] opt pkgsb3 00025 07 20170113-
07:48:21UT B /usr/ports/opt/llvm pkgmk -d -f -u -if -kw -ns
--- 389 ----
! llvm 3.9.1-3 [same] opt pkgsb3 00031 06 20170130-
14:11:42UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f llvm

*** 393 ****
! mako 1.0.1-1 [same] opt pkgsb3 00025 11 20170113-
11:33:45UT B /usr/ports/opt/mako pkgmk -d -f -u -if -kw -ns
--- 393 ----
! mako 1.0.4-1 [same] opt pkgsb3 00031 06 20170130-
14:12:53UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f mako

*** 454 ****
! taglib 1.11-1 [same] opt pkgsb3 00025 07 20170113-
06:56:31UT B /usr/ports/opt/taglib pkgmk -d -f -u -if -kw -ns
--- 454 ----
! taglib 1.11.1-1 [same] opt pkgsb3 00031 06 20170130-
14:12:04UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f taglib

*** 519 ****
! mesa3d 12.0.5-1 [same] xorg pkgsb3 00025 12 20170113-
12:15:30UT B /usr/ports/xorg/mesa3d pkgmk -d -f -u -if -kw -ns
--- 519 ----
! mesa3d 12.0.6-1 [same] xorg pkgsb3 00031 06 20170130-
14:22:33UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f mesa3d

*** 601 ****
! xorg-libxi 1.7.8-1 [same] xorg pkgsb3 00025 12 20170113-
12:00:43UT B /usr/ports/xorg/xorg-libxi pkgmk -d -f -u -if -kw -ns
--- 601 ----
! xorg-libxi 1.7.9-1 [same] xorg pkgsb3 00031 06 20170130-
14:15:34UT U /var/log/pkgbuild/_/00031/06 prt-cache update -if -kw -fr -ns --install-scripts -f xorg-libxi
==== Results of revdep:
libreoffice
opera
syslinux
tesseract
==== End of revdep results.
==== Do not forget to run rejmerge

6.10. Output: cat /usr/prtpkg/CRUX-3.2/prtpkg_by_col.20170130-161126.log
package----------------------------- pkg/db_version- port_version collection-- build- batch try date_time---------- type
 firefox-java-plugin 1.7.0-2 !? !? !? !? !? !? !?
 gc 7.4.2-1 !? !? !? !? !? !? !?
 leptonica [not installed] 1.74.1-1 6c37 pkgsb3 00031 04 20170130-05:09:46UT I
 log4cplus [not installed] 1.2.0-1 6c37 pkgsb3 00031 04 20170130-05:08:48UT I
 python3-pip 9.0.1-1 [same] 6c37 pkgsb3 00031 01 20170129-18:05:33UT I
 python3-pyflakes 1.5.0-1 [same] 6c37 pkgsb3 00031 05 20170130-05:50:10UT I
 rubberband 1.8.1-1 [same] 6c37 pkgsb3 00025 11 20170113-11:27:17UT B
 vamp-plugin-sdk 2.6-2 [same] 6c37 pkgsb3 00025 07 20170113-06:55:13UT B
 python3-setuptools 34.1.0-1 [same] _symlinks pkgsb3 00031 06 20170130-13:32:44UT U
 tesseract 3.04.01-1 [same] _symlinks pkgsb3 00031 05 20170130-05:49:59UT I
 atkmm 2.24.2-1 [same] contrib pkgsb3 00025 18 20170113-20:52:49UT B
 boost 1.63.0-1 [same] contrib pkgsb3 00025 07 20170113-07:10:43UT B
 bridge-utils 1.5-1 [same] contrib pkgsb3 00025 01 20170109-01:48:19UT B
 cairomm 1.12.0-1 [same] contrib pkgsb3 00025 12 20170113-12:07:19UT B
 denyhost 2.9-1 [same] contrib pkgsb3 00025 07 20170113-07:49:25UT B
 dev86 0.16.21-1 [same] contrib pkgsb3 00025 01 20170109-01:50:43UT B
 dmidecode 2.12-1 [same] contrib pkgsb3 00025 01 20170109-01:51:11UT B
 docbook-xml [not installed] 4.5-6 contrib pkgsb3 00012 04 20161225-17:08:13UT I

6.11. Output: pkg_basenames [in transition to data reorg]
BBS xfwm4-themes(4.10.0-1) D '/usr/share/themes/BBS'
BC.3x.gz ncurses(6.0-3) F '/usr/share/man/man3/BC.3x.gz'
' -> 'curs_termcap.3x.gz'
' => '/usr/share/man/man3/curs_termcap.3x.gz'
BCC.pm perl(5.22.3-1) F '/usr/lib/perl5/5.22/ExtUtils/CBuilder/Platform/Windows/BCC.pm'
BDCE.h llvm(3.9.1-3) F '/usr/include/llvm/Transforms/Scalar/BDCE.h'
BER.h gcj-jdk(5.4.0-1) F '/usr/include/c++/5.4.0/gnu/java/security/ber/BER.h'
BEREncodingException.h gcj-jdk(5.4.0-1) F '/usr/include/c++/5.4.0/gnu/java/security/ber/BEREncodingException.h'
BERReader.h gcj-jdk(5.4.0-1) F '/usr/include/c++/5.4.0/gnu/java/security/ber/BERReader.h'
BERValue.h gcj-jdk(5.4.0-1) F '/usr/include/c++/5.4.0/gnu/java/security/ber/BERValue.h'
BF_cbc_encrypt.3ssl.gz openssl(1.0.2k-1) F '/usr/share/man/man3/BF_cbc_encrypt.3ssl.gz'
' -> 'blowfish.3ssl.gz'
' => '/usr/share/man/man3/blowfish.3ssl.gz'
BF_cfb64_encrypt.3ssl.gz openssl(1.0.2k-1) F '/usr/share/man/man3/BF_cfb64_encrypt.3ssl.gz'
' -> 'blowfish.3ssl.gz'
' => '/usr/share/man/man3/blowfish.3ssl.gz'

Page 41 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

6.12. Prolog: localize_ports [in transition to data reorg]
If no args, configures all ports after the initial portsu script for maintenance on this
system using the enhanced framework; otherwise, configures a new port for the enhanced
framework ($1=collection $2=package) and is meant to be called from the prtpkg script.

6.13. Prolog: missing_packages [in transition to data reorg]
Show packages depended on that do not exist, sorted by:
 name of collection referencing missing package
 name of package referencing missing package
 version of package referencing missing package
 name of missing depended on package
The only argument is the target-ID of the running system to
confirm this invocation is not merely a help request.

6.14. Prolog: missing_packages_doit (gawk) [in transition to data reorg]
from /usr/CRUX/prtlist.*.txt, write missing_ports records to
stdout (expected to be redirected to /tmp/missing_ports.pkgs.
The /tmp/missing_packages.pkgs file created by the
missing_packages script is read into an array to provide the
definitive list of all known packages.

6.15. Output: misspkglog [in transition to data reorg]
6c37 rubberband 1.8.1-1 vamp-plugins-sdk
6c37-git connman git-1 gnutils
6c37-git nctelegram git-1 pytg3
6c37-git od6config git-1 fglrx
6c37-git urwid3 1.3.1-1 setuptools3
alan anki 2.0.39-1 distribute
alan docbook2x 0.8.8-1 docbook
alan dovecot 2.2.25-6 tcp_wrappers
alan freevo 1.9.0-1 pygame
alan gocr 0.50-1 netpbm
alan hplip 3.11.10-1 foomatic-filters
alan k2pdfopt 2.32-1 netpbm
alan kodi 16.1-Jarvis-6 freetype2
alan lirc-xmms-plugin 1.4-1 xmms
alan nfs-utils 1.3.3-4 udev
alan p5-calendar-japanese-holiday 0.03-1 p5-calendar
alan p5-cam-pdf 1.60-1 p5-crypt-rc4
alan p5-dbd-sqlite 1.46-1 sqlite
alan p5-module-signature 0.70-1 p5-digest-sha
alan p5-net-dbus 1.0.0-1 p5-xml-twig
alan p5-text-pdf 0.29a-1 p5-crypt-rc4
alan p5-xml-xql 0.68-1 p5-date-manip
alan p5-xml-xql 0.68-1 p5-xml
alan p5-yaml 1.15-2 p5-spiffy
alan p5-yaml 1.15-2 p5-test-base
alan py-send2trash 1.3.0-1 distribute
alan pyqt 4.9.1-1 qt
alan pysqlite 2.4.1-1 sqlite
alan spamassassin 3.4.1-2 p5-lwp
alan timidity-sgm 2.01-1 timidity

6.16. Prolog: pkgaddconf [targets contain TODO items]
 ensure the /etc/pkgadd.conf symlink points to the version defined by the
 specified target argument; e.g., for argument xyzzy[plugh], the symlink
 should be or become
 /etc/pkgadd.conf -> /usr/CRUX/xyzzy[plugh]/pkgadd.conf
 If successful, the script writes the target component of the previous
 symlink (may be the same) to stdout.
 -or- omit an argument to output the target component of the current symlink
 to stdout (this does not require the caller to be the superuser).
 return: Status code 0 is returned to indicate the data written to stdout is the
 expected value; otherwise, an error message is written to stdout and a
 non-zero status code is returned.

targets: define a CRUX port/package building structure to support a particular
 set of port/package maintenance activities. Targets come in three types
 having one of the following formats as appropriate:
 release: CRUX-$V.$R; e.g., CRUX-3.2

Page 42 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

 system: $HOST[$ROOT]; e.g., mydevbox[SSD3], where:
 $HOST is the output of the hostname command for the targeted
 system
 $ROOT is the enterprise's identifier for the targeted root
 filesystem of that system, ideally a volume, partition,
 or filesystem label
 shared: an enterprise-meaningful string without any brackets; e.g.,
 shared, common, production, testing, marketing

 A release target is used for ports -u processing by one CRUX software
 maintenance system designated to do so on behalf of all other CRUX
 systems in the enterprise running the same version of CRUX. It defines
 the standard /usr/ports tree of prtdirs on that system.

 A system target is used for building and installing/removing packages
 for the targeted system (which is not necessarily the system performing
 the port/package maintenance). A system target's prt-get.config file
 defines the /usr/prtpkg/$system/ports tree of prtdirs that deploy symlinks
 to redirect to the release ports directories that the system uses (see
 the validate_system command for more information). For example,
 /usr/prtpkg/systems/xyzzy[plugh]/ports/core/gcc -> /usr/ports.core/gcc

 A shared target is exactly like a system target except it identifies a
 grouping of systems sharing the same building configuration. One system
 should be designated to perform the actual port/package maintenance on
 the behalf of the group--it need not even be in that group.

6.17. Prolog: prtlist [in transition to data reorg]
For all packages defined within /etc/prt-get.conf (via prtdir statements),
produce a sorted list of the packages, with different ports of the same name
sorted in prtdir access order (the first is the port that prt-get will act
upon, and the others will have a single double quotation mark appended; i.e.,
a "ditto" indicator). Each port line includes the prtdir path, the
version-release tuple, and an optional indicator that the package does not
contains a "Depends on:" record. Each port line is followed by lines
containing the Depends on: values, indented by two spaces, and listed in
the order they are specified in the "Depends on:" record.

This script takes no parameters. It should be run after a "ports -u" command
(which is one reason you should instead use the portsu script on this system)
or after the order and/or content of the prtdir statements in /etc/prt-get.conf
is modified.

The output is put into a file named as /usr/ports/prtlist.YYYYMMDD-HHMMSS.txt
and if an earlier file exists, the two are compared and the result is placed
into /usr/ports/prtlist.diffs, then the older file is compressed using bzip2
and moved into the /usr/ports/prtlist_past directory.

A /tmp/prtlist.$$.debug file contains details of processing helpful in diagnosing
any misbehavior.

6.18. Prolog: prtlist_packages (gawk) [in transition to data reorg]
from /usr/prtpkg/$PRTPKG_PORTS/prtlist.*.txt, extract list of available packages

6.19. Output: prtlist [in transition to data reorg]
babl /usr/ports/opt 0.1.16-1
babl" /usr/ports/teatime 0.1.18-1 [no Depends On]
babl" /usr/ports/deepthought 0.1.18-1
backlight /usr/ports/6c37-git git-1
 git
baloo /usr/ports/kde4 4.14.3-1
 kdepimlibs
 xapian
 kfilemetadata
baloo" /usr/ports/kf5 5.30.0-1
 gtk
 kfilemetadata
 kidletime
 kio
 lmdb
 gtk
baloo-widgets /usr/ports/kf5 16.12.1-1
 kdelibs4support
 baloo
bash /usr/ports/core 4.3.48-1
 ncurses
 readline
bash-completion /usr/ports/opt 2.1-2

Page 43 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

 bash
bash-completion-extras /usr/ports/deepthought 0.0-1
 bash-completion
bash-git-prompt /usr/ports/deepthought 1.2-1 [no Depends On]
bashish /usr/ports/romster 2.2.4-1
bashish" /usr/ports/6c37 2.2.4-1

6.20. Prolog: prtpkg_symlink (gawk)
from piped input for an "/bin/ls -lh" command for a single
symlink, extract the redirection string and write it to stdout

6.21. Prolog: prtpkginfo [in transition to data reorg]
prtpkginfo -- see catted help below for documentation

input prtpkg.txt package maintenance record format (tab field separators):
$1 [YYYYMMDDhhmmss] $2 $3 $4 $5 $6 $7 $8 $9 $10 $11
00000000-00:00:00UT rc type pkg version collection build batch try pwd cmd

output txt record format (tab field separators) and associated log columns:
$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11
pkg_name pkg_ver out_ver prt_col prt_bld prt_bat prt_try prt_dat prt_typ prt_pwd prt_cmd
always always always always -bld -bat -try -dat -typ -pwd -cmd

6.22. Output: prtpkginfo -h [in transition to data reorg]
prtpkginfo: Create prtpkg_by_{pkg,col}.$tstmp.{txt,log} files
 from /usr/prtpkg/systems/$system/var.lib.pkg/db and
 /usr/prtpkg/system/$system/prtpkg.txt files. The
 txt files are created if the input files have been
 modified since the most recent prtpkg_by_pkg.*.txt
 file in the working directory was created, if any (or
 this can be explicitly requested via the -upd flag).
 The log files are created from the txt files if requested.
 If there are current prtpkg_by_{pkg,col}.txt files
 in the working directory, diffs files against any new
 .txt files are created and the older .txt files are
 compressed and moved into the working directory's
 prtpkg_past subdirectory that will be created if
 necessary.
Note: Unknown flags are silently ignored.
Processing option flags:
 -sup: change the working directory to /usr/prtpkg/$PRTPKG_PORTS
 (requires superuser authority).
 -upd: requests update of the prtpkg_*.txt files in the working
 directory even if that does not seem to be necessary.
 -lpf: requests output of the by_pkg log as the file
 prtpkg_by_pkg.log file in the working directory.
 -lcf: requests output of the by_col log as the file
 prtpkg_by_col.log file in the working directory.
 -lps: requests output of the by_pkg log to stdout.
 -lcs: requests output of the by_col log to stdout.
 -dbg: log debug messages to /tmp/prtpkg.$USER.debug
 Note: -lpf and -lps are two sides of a coin--the file
 option prevails if both are specified; if neither
 is specified, the file/stream is not output.
 The same is true of the -lcf and -lcs options.
Optional log file fields selected by flags:
 -bld: include build ID in log files|streams
 -bat: include batch ID in log files|streams
 -try: include try ID in log files|streams
 -dat: include date in log files|streams
 -typ: include prtpkg record type in log files|streams
 -pwd: include cmd's working directory in log files|streams
 -cmd: include low-level command in log files|streams
 -all: include all of the preceding fields in log files|streams

6.23. Prolog: validate_builds [very early new program]
Ensure the target system's tree of ports used in the builds
version of /etc/prt-get.conf (referred to as the builds ports
tree) matches the packages currently installed (or uninstalled
but built) as recorded in /usr/prtpkg/$PRTPKG_PORTS/prtpkg.txt.
If multiple ports for an uninstalled package are available,
the one chosen is the first in the prtdir order according to

Page 44 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

the portsu version of prt-get.conf, which uses the _symlinks
pseudo-collection to contain symlinks to any cherry-picked
ports; e.g.,
 /usr/ports/_symlinks/xyzzy -> /usr/ports/plugh/xyzzy
Inodes in builds ports collection subdirectories are symlinks
to the portsu ports tree; e.g.,
 /usr/CRUX/$hrid/ports/plugh/xyzzy -> /usr/ports/plugh/xyzzy
Installed ports that have no port history will be presumed
to be associated with the portsu config's normal selection
(the highest prtdir having a port for that package).
This script takes only optional '-h' and '--help' arguments.

6.24. Prolog: validate_symports [in transition from varports]
Ensure the symports tree used in the builds version of
/etc/prt-get.conf matches the packages either currently
installed or uninstalled but built as recorded in
/usr/prtpkg/$PRTPKG_PORTS/prtpkg.txt. If multiple ports
for an uninstalled package are available, the one chosen
is the first in the prtdir order according to the portsu
version of prt-get.conf, which uses the _symlinks pseudo-
collection to contain symlinks to any cherry-picked
ports; e.g.,
 /usr/ports/_symlinks/xyzzy -> /usr/ports/plugh/xyzzy
Inodes in symports collection subdirectories are symlinks
to the portsu ports; e.g.,
 /usr/prtpkg/systems/boxA[rootfsB]/ports/plugh/xyzzy →
 /usr/prtpkg/CRUX-3.2/ports/plugh/xyzzy
Installed ports that have no port history will be presumed
to be associated with the portsu config's normal selection
(the highest prtdir having a port for that package).
Note the /var/ports tree is implicitly connected to the
root filesystem in which it resides (and the host thereof),
identified elsewhere in the prtpkg tools as `hostname`_$ROOT
where ROOT is set to the enterprise's label for the root
filesystem during boot.
This script takes only optional '-h' and '--help' arguments.

6.25. Prolog: validate_symports_links (gawk) [in transition from varports]
from /tmp/validate_symports.links, identify all
packages that reside in multiple collections
(note pseudo-collection _symlinks ports should
never be seen by this script but the logic for
dealing with them remains in place). Any multiples
found are recorded in /tmp/validate_varports.dups
for subsequent remediation by continuing
processing of the validate_symports script.
Messages of significance are written to stdout,
and the status code returned is the number of
packages needing remediation

6.26. Prolog: whatpkg [in transition to WHATPKG_ variables]
Lookup the port collection and version for installed package $1
as recorded in the designated prtpkg.txt file.

6.27. Prolog: whatpkg_2ndline (gawk) [in transition to WHATPKG_ variables]
from /dev/null, based upon the values of the WHATPKG_PKGINFO and WHATPKG_PRTPKGTXT
environment variable values, write as appropriate to stdout:
 "pkginfo reports uninstalled"
--or-- "pkginfo version mismatch: " followed by the value of WHATPKG_PKGINFO
--or-- nothing
Regardless, return status code zero is returned.

6.28. Prolog: whatpkg_pkginfo (gawk) [in transition to WHATPKG_ variables]
find WHATPKG_PKG environment variable value in input stream from pkginfo -i
If found, write the installed version to stdout and return status code zero.
If not found, write "[uninstalled]" to stdout and return status code one.
Otherwise, write an error message to stdout and return greater than one status.

Page 45 of 48

CRUX prtpkg Software Maintenance--An Overview Jun 16, 2017 19:28:11UT

6.29. Prolog: whatpkg_prtpkgtxt (gawk) [in transition to WHATPKG_ variables]
in input /var/log/prtpkg.txt, find the most recent successful
type B, I, or U record for the package defined in the WHATPKG_PKG
environment variable, if any. If a suitable record is found,
write its following fields separated by tabs:
 collection port-version buildID batchID tryID
and return a zero status code; if one is not found, write an
informational message to stdout and return status code one;
otherwise, write an error message to stdout and return a status
code greater than one.

6.30. Prolog: whatprt [in transition to WHATPRT_ variables]
Lookup the port collection for package $1 that the current
/etc/prt-get.conf will cause to be selected. Write that
as well as the version of the package to stdout and return
status code zero, write an informational message to stdout
and return status code two if the port is not found, or
write an error message to stdout and return a status code
greater than two. Status code one is returned when help
information is written to stdout.

6.31. Prolog: whatprt_doit (gawk) [in transition to WHATPRT_ variables]
from the current /etc/prt-get.conf file's prtdir statements,
determine what port will be selected for processing by prt-get
and write the collection's path and the Pkgfile's version-release
information to stdout. The package to lookup is predefined in
the WHATPRT_PKG environment variable and WHATPRT_DBG is defined
as null (no debugging output) or the string to use in the
name of the debugging output file; i.e.,
/tmp/whatprt.$WHATPRT_DBG.debug.
If the search is successful, status code zero is returned.

Page 46 of 48

CRUX prtpkg Software Maintenance--An Overview Endnotes Page 47 of 48

i Usage of the noun system in this document strives to hold to a precise definition that
differentiates it from the noun cell that is also precisely defined (later) in this
document. A “system” is a really or virtually bootable entity that provides more
services to the enterprise than merely running prtpkg processes (and perhaps runs no
such processes and perhaps not even CRUX) and thus has reliability, availability,
security, user data handling/storage, and system administration support requirements
beyond those of a mere prtpkg-only bootable entity. In short, prtpkg and its
documentation tries to ignore computing outside its mission and focuses on its cells.
There is possible overlap when a system runs software maintained by prtpkg, of
course, because then it is most likely simultaneously a system and a cell. Also,
“prtpkg platform” should be understood to be a particular boot cell plus all chroot
cells in its root tree that are not mounted in a networked filesystem, and is explicitly
meant to not include any virtual machine cells hosted via the boot cell.

ii This endnote explains in one paragraph all the botanical and maritime analogies used
to reference filesystem namespace components within this entire document. The noun
“tree” in this document is an inode in a filesystem that has or can have trees of its own
and includes all the referenced tree’s “branches” (just subtrees) and “leaves” (the ends
of the lines, never directories or anchors, but possibly reflinks). The noun “trunk”
connotes the foundational inode of a tree, which must be a directory, possibly empty
but having the potential to sprout branches. A symlink to a trunk is not the trunk
itself and is referenced using the noun “anchor” when referring to the trunk, otherwise
it is referred to as a tree. However, the transitive verb “anchor” implies a direct object
that may be a trunk or an anchor. Note that a tree may not necessarily refer to a
trunk or an anchor—it may be a file inode in the logical filesystem but its name and
any content can identify a tree the logical filesystem should contain somewhere. This
works somewhat like a C++ reference so we’ll call this a “reflink” when needed. One
last definition: “logical filesystem” refers to the effective root filesystem including all
other filesystems mounted within the root filesystem’s namespace at the time of
reference; i.e., all the inodes that are currently accessible via an absolute path.

iii The noun “cell” refers to a prtpkg software building zone. These can be bootable or
chrootable; either way, they have unique instances of /etc/ports, /usr/ports, /var,
etc.. A system is a prtpkg cell iff it is defined as such in a prtpkg commonwealth.
The possibility that the cell is also a system is rarely relevant to the discussion.

Page 47 of 48

CRUX prtpkg Software Maintenance--An Overview Endnotes Page 48 of 48

iv The noun “porter” refers to a cell that is authorized to perform portdb and portsu
processing within a prtpkg commonwealth (even if the commonwealth is comprised of
a single prtpkg platform).

v The noun “builder” refers to a cell that is authorized to perform pkgmk processing
within a prtpkg commonwealth (even if the commonwealth is comprised of a single
prtpkg platform). Builders may be restricted to specific distribution releases and
build definitions.

vi The noun “deployer” refers to a cell that is authorized to perform pkgadd, pkgrm, and
rejmerge processing on a particular cell (even if the commonwealth is comprised of a
single prtpkg platform). Normally deployers are only authorized to add and remove
packages on their own BOOTOS ROOTFS tree and may be restricted to packages created
for particular distribution releases and build definitions.

Page 48 of 48

	CRUX prtpkg Software Maintenance: An Overview
	1. Historical Software Maintenance in CRUX—KISS
	1.1. What Is CRUX? What is KISS?
	1.2. In The Beginning, pkgutils
	1. download the package source code tarball(s),
	2. extract the tarball content into a usually temporary build (aka work) directory,
	3. configure the build directory for building usually via a configure script,
	4. build (compile and link, etc.) the package using a make command, and
	5. install the built results into the system, usually using a make install command.

	1.3. Supporting Different Package Configurations: ports, prt‑get
	1.4. Official Website For Collections

	2. What prtpkg Adds to CRUX Software Maintenance
	2.1. In a Nutshell
	2.1.1. Shared Maintenance Within or Between Systems
	2.1.2. Maintenance Activity Tracking
	2.1.3. Building Configurations
	2.1.4. Maintenance Policies

	2.2. Rationale
	2.3. What prtpkg Does Not Add to CRUX Software Maintenance

	3. Design Concepts
	3.1. Graphical Overview
	3.2. Introducing Commonwealth: Global and Local Concepts
	3.2.1. Boot and chroot Cells For /etc, /usr, and /var
	3.2.1.1. Concepts For chroot Cells
	1. prtpkg chroot cells do not have a system persona—they do prtpkg work exclusively (non-prtpkg CRUX systems booted and chrooted are of course free to perform canonical software maintenance including simply running pkgadd using prtpkg-built packages without the benefit of prtpkg tracking and serialization safeguards);
	2. prtpkg chroot cells are treated the same as real machine boot cells, virtual machine and container boot cells, and any virtual systems’ chroot cells; and
	3. prtpkg chroot commands use only local chroot cells (this restriction may be relaxed if testing reveals no logical or performance impediments when chrooting into cells accessed via network filesystems).

	3.2.2. Senior and Junior Cells For portdb
	3.2.3. Prime, usrport, and symport Cells For portsu
	3.2.4. Filesystems
	3.2.5. Userids and Groupids
	3.2.6. Environment Variables
	3.2.6.1. BOOTOS
	3.2.6.2. ROOTFS
	3.2.6.3. PRTPKG_CELL

	3.3. Installs and Release Updates For Cells
	3.3.1. Kernel Maintenance
	3.3.2. Installing Into Boot Cells
	3.3.2.1. Pre-existing Commonwealth
	3.3.2.2. New Single-platform Commonwealth
	3.3.2.3. New Multi-platform Commonwealth

	3.3.3. Installing Into chroot Cells
	3.3.4. Release Updates—Overview
	3.3.4.1. Phase 1 for boot Cells
	3.3.4.2. Phase 1 for chroot Cells
	3.3.4.3. Phase 2 for All Cells (portdb update)

	3.4. Introducing Layers: releases, symports, mixes, builds, and deploys
	3.4.1. Symport Collection Sets
	3.4.2. Mixed Cells

	3.5. Introducing Relationships: porters, builders, and deployers
	3.6. Introducing Batches: prtpkgbatch and its *.prtpkg files
	3.7. Introducing New Configuration Files: build.conf and deploy.conf
	3.8. Introducing /usr/prtpkg and Where To Find Everything
	3.8.1. /usr/prtpkg/release
	3.8.2. /usr/prtpkg/broadcasts
	3.8.3. /usr/prtpkg/builds
	3.8.4. /usr/prtpkg/cells
	3.8.5. /usr/prtpkg/groups
	3.8.6. /usr/prtpkg/mixes
	3.8.7. /usr/prtpkg/PRTPKG
	3.8.8. /usr/prtpkg/PORTDB
	3.8.9. /usr/prtpkg/release/builders
	3.8.10. /usr/prtpkg/release/deployers
	3.8.11. /usr/prtpkg/release/distfiles
	3.8.12. /usr/prtpkg/release/packages
	3.8.13. /usr/prtpkg/release/work
	3.8.14. /usr/prtpkg/release/PORTSU
	3.8.15. /usr/prtpkg/cells/cell
	3.8.16. /usr/prtpkg/cells/cell/prtpkg.txt
	3.8.17. /usr/prtpkg/cells/cell/notices
	3.8.18. /usr/prtpkg/cells/cell/requests
	3.8.19. /usr/prtpkg/cells/cell/types

	3.9. Mapping Old Commands Into New Commands

	4. Processing Organization
	4.1. Resource Serialization (Locks)
	4.1.1. Serialization Classes
	4.1.2. Serialization Operations
	4.1.2.1. lock_obtain
	4.1.2.2. lock_assume
	4.1.2.3. lock_freeup
	4.1.2.4. lock_cancel
	4.1.2.5. lock_unlock
	4.1.2.6. lock_giveup

	4.1.3. Serialization Types
	4.1.3.1. Global Serialization: PRTPKG
	4.1.3.2. Driver Config Serialization: PORTDB
	4.1.3.3. Collection Serialization: PORTSU{*|collection}
	4.1.3.3.1. All collections: PORTSU_*
	4.1.3.3.2. One collection: PORTSU_collectionname

	4.1.3.4. Port Serialization: MAKE_portname
	4.1.3.5. Build Serialization: WORK_portname_version_buildname
	4.1.3.6. Deploy Serialization: PKG_portname_version_buildname

	4.2. Inter-process Communication
	4.2.1. Signal Processing
	4.2.2. Shared Files
	4.2.2.1. Broadcast, Request, and Notices Queues
	4.2.2.1.1. Commonwealth Broadcast Queue
	4.2.2.1.2. Cell Request Queues
	4.2.2.1.3. Cell Notices Queues

	5. Package Components
	6. Command Information: Help, Prolog, Sample Outputs
	6.1. Output: prtpkg h [contains TODO items]
	6.2. Output: prtpkg h syntax [contains TODO items]
	6.3. Output: prtpkg h global [contains TOTO items]
	6.4. Output: prtpkg h prt [entirely TODO items]
	6.5. Output: prtpkg h pkg [entirely TODO items]
	6.6. Prolog: prtpkgbatch [contains TODO items]
	6.7. Prolog: prtpkglog [in transition to data reorg]
	6.8. Output: prtpkglog [in transition to data reorg]
	6.9. Output: cat /usr/prtpkg/cells/dlcz[ZD]/CRUX-3.2/pkgsb3/log/00031/06.log
	6.10. Output: cat /usr/prtpkg/CRUX-3.2/prtpkg_by_col.20170130-161126.log
	6.11. Output: pkg_basenames [in transition to data reorg]
	6.12. Prolog: localize_ports [in transition to data reorg]
	6.13. Prolog: missing_packages [in transition to data reorg]
	6.14. Prolog: missing_packages_doit (gawk) [in transition to data reorg]
	6.15. Output: misspkglog [in transition to data reorg]
	6.16. Prolog: pkgaddconf [targets contain TODO items]
	6.17. Prolog: prtlist [in transition to data reorg]
	6.18. Prolog: prtlist_packages (gawk) [in transition to data reorg]
	6.19. Output: prtlist [in transition to data reorg]
	6.20. Prolog: prtpkg_symlink (gawk)
	6.21. Prolog: prtpkginfo [in transition to data reorg]
	6.22. Output: prtpkginfo -h [in transition to data reorg]
	6.23. Prolog: validate_builds [very early new program]
	6.24. Prolog: validate_symports [in transition from varports]
	6.25. Prolog: validate_symports_links (gawk) [in transition from varports]
	6.26. Prolog: whatpkg [in transition to WHATPKG_ variables]
	6.27. Prolog: whatpkg_2ndline (gawk) [in transition to WHATPKG_ variables]
	6.28. Prolog: whatpkg_pkginfo (gawk) [in transition to WHATPKG_ variables]
	6.29. Prolog: whatpkg_prtpkgtxt (gawk) [in transition to WHATPKG_ variables]
	6.30. Prolog: whatprt [in transition to WHATPRT_ variables]
	6.31. Prolog: whatprt_doit (gawk) [in transition to WHATPRT_ variables]

